LI4278 プロダクトリファレンス ガイド

LI4278 プロダクト リファレンス ガイド

72E-151834-07JA Revision A

2016 年 7 月

Zebra の書面による許可なしに、本書の内容をいかなる形式でも、または電気的あるいは機械的な手段に より、複製または使用することを禁じます。これには、コピー、記録、または情報の保存および検索シス テムなど電子的または機械的な手段が含まれます。本書の内容は、予告なしに変更される場合があります。

ソフトウェアは、厳密に「現状のまま」提供されます。ファームウェアを含むすべてのソフトウェアは、 ライセンスに基づいてユーザーに提供されます。本契約(ライセンス プログラム)に基づいて提供される 各ソフトウェアまたはファームウェアに対して、ユーザーに移譲不可で非排他的なライセンスを付与しま す。下記の場合を除き、事前に書面による Zebra の同意がなければ、ユーザーがライセンスを譲渡、サブ ライセンス、または移譲することはできません。著作権法で認められる場合を除き、ライセンス プログラ ムの一部または全体をコピーする権限はありません。ユーザーは、ライセンス プログラムを何らかの形式 で、またはライセンス プログラムの何らかの部分を変更、結合、または他のプログラムへ組み込むこと、 ライセンス プログラムからの派生物を作成すること、ライセンス プログラムを Zebra の書面による許可 なしにネットワークで使用することを禁じられています。ユーザーは、本契約に基づいて提供されるライ センス プログラムについて、Zebra の著作権に関する記載を保持し、承認を受けて作成する全体または一 部のコピーにこれを含めることに同意します。ユーザーは、提供されるライセンス プログラムまたはその いかなる部分についても、逆コンパイル、逆アセンブル、デコード、またはリバース エンジニアリングを 行わないことに同意します。

Zebra は、信頼性、機能、またはデザインを向上させる目的でソフトウェアまたは製品に変更を加えることができるものとします。

Zebra は、本製品の使用、または本文書内に記載されている製品、回路、アプリケーションの使用が直接 的または間接的な原因として発生する、いかなる製造物責任も負わないものとします。

明示的、黙示的、禁反言、または Zebra Technologies Corporation の知的所有権上のいかなる方法による かを問わず、ライセンスが付与されることは一切ないものとします。Zebra 製品に組み込まれている機器、 回路、およびサブシステムについてのみ、黙示的にライセンスが付与されるものとします。

保証

Zebra のハードウェア製品の保証については、次のサイトにアクセスしてください。 http://www.zebra.com/warranty

改訂版履歴

元のガイドに対する変更を次に示します。

変更	日付	説明
-01 Rev. A	1/2012	初期リリース
-02 Rev. A	4/2013	以下を追加しました。 - Apple iOS 対応 HID 機能 - 非請求ハートビート間隔 - スキャナ パラメータのダンプ - パラメータ番号を属性番号に変更 - 属性番号を追加
-03 Rev. A	7/2013	以下を更新しました。 - このガイド全体の見た目を更新 - 8-5 ページ、注 2 - Matrix 2 of 5 読み取り桁数のデフォルト用語 - ISBT の連結: 自動識別のバーコード値を 02h に変更
-04 Rev. A	10/20/14	Zebra への商標変更
-05 Rev. A	2015 年 1 月	保存可能なバーコード数の式を更新し、正しいメモリ サイズを使用するように修正 (メモリは 30,720 バイトではなく 9,000 バイト)。
-05 Rev. B	2015 年 3 月	Zebra への商標変更
-06 Rev. A	2015 年 7 月	Zebra ロゴおよび著作権を更新。用語集を削除。通信プロトコルの表を追加。
-07 Rev. A	2016 年 7 月	高度なデータ・フォーマットを更新します(ADF)

保証	. ii
改訂版履歴	. iii

このガイドについて

はじめに	Xiii
スキャナの構成	xiii
関連する製品ラインの構成	xv
章の説明	xix
表記規則	xx
関連文書	xxi
サービスに関する情報	xxi
	/0/11

第1章:最初のステップ

はじめに	1-1
インタフェース	1-2
リニア イメージャー スキャナとクレードルの開梱	1-2
各部の名称	1-3
スキャナ	1-3
CR0078-S/CR0008-S シリーズ クレードル	1-4
CR0078-P シリーズ クレードル	1-6
リニア イメージャー スキャナ クレードル	1-7
CR0078-S/CR0008-S シリーズ クレードルの接続	1-8
CR0078-S/CR0008-S クレードルへの給電	1-8
CR0078-P シリーズ クレードルの接続	1-9
CR0078-P クレードルへの電源供給	1-9
ホストへの接続の切断	1-10
クレードルの取り付け	1-10
リニア イメージャー スキャナ バッテリの交換	1-11
リニア イメージャー スキャナ バッテリの充電	1-12
リニア イメージャー スキャナ バッテリをオフにする	1-12
リニア イメージャー スキャナ バッテリの再調整	1-13
バッテリの再調整時の LED の定義	1-13
クレードルへのリニア イメージャー スキャナの装着	1-14
CR0078-S/CR0008-S クレードルへのリニア イメージャー スキャナの装着	1-14
クレードルの水平取り付け	1-14

クレードルの垂直設置	1-14
CR0078-P クレードルへのリニア イメージャー スキャナの装着/取り外し	1-15
垂直設置ブラケットのテンプレート	1-17
無線通信	1-18
リニア イメージャー スキャナの設定	1-18
アクセサリ	1-18
ストラップ	1-18

第2章:スキャン

はじめに	-1
ビープ音および LED の定義	-1
クレードルの LED の定義	-5
スキャン	-6
照進 2	-6
	-6
ハンズフリー スキャン	-7
読み取り範囲 2	-8
照準 2 ハンドヘルド スキャン 2 ハンズフリー スキャン 2 読み取り範囲 2	-6 -6 -7 -8

第3章:メンテナンス、トラブルシューティング、技術的な仕様

	はじめに	3-1
	メンテナンス	3-1
	既知の有害成分	3-1
	承認されている洗浄剤	3-1
	リニア イメージャー スキャナのクリーニング	3-2
	リニア イメージャー スキャナのクレードルのクリーニング	3-2
	バッテリに関する情報	3-3
	トラブルシューティング	3-4
;	技術什樣	3-9
	クレードル信号の意味	3-13

第4章:無線通信

はじめに	4-1
スキャン シーケンスの例	4-1
スキャン中のエラー	4-1
無線通信パラメータのデフォルトー覧	4-2
ワイヤレスのビープ音の定義	4-3
無線通信ホスト タイプ	4-3
Bluetooth Technology Profile Support	4-5
マスタ/スレーブのセットアップ	4-5
マスタ	4-5
スレーブ	4-5
Bluetooth フレンドリー名	4-6
検出可能モード	4-6
HID ホスト パラメータ	4-7
Apple iOS 対応 HID 機能	4-7
HID キーボード タイプ (カントリー コード)	4-8
HID キーボードのキャラクタ間ディレイ	4-10
HID CAPS Lock キーのオーバーライド	4-10
HID 不明な文字の無視	4-11
キーパッドのエミュレート	4-11
HID キーボードの FN1 置換	4-12
HID ファンクション キーのマッピング	4-12

Caps Lock のシミュレート	4-13
大文字/小文字の変換	4-13
自動再接続機能	4-14
再接続試行のビープ音のフィードバック	4-15
再接続試行間隔	4-16
Bluetooth キーボード エミュレーション (HID スレーブ) モードでの自動再接続	4-17
通信エリア外インジケータ	4-18
装着時のビープ音	4-18
リニア イメージャー スキャナからクレードルへのサポート	4-19
動作モード	4-19
ポイント・ツー・ポイント通信	4-19
マルチポイント・ツー・ポイント通信	4-19
パラメータ ブロードキャスト (クレードル ホストのみ)	4-20
ペアリング	4-20
ペアリング モード	4-21
ロック無効化	4-22
ペアリング方法	4-22
ペアリング解除	4-22
ペアリングバーコードのフォーマット	4-23
ペアリングバーコードの例	4-23
コネクション維持時間	4-23
考慮事項	4-23
バッチ モード	4-26
動作モード	4-26
ページ ボタン	4-28
Bluetooth セキュリティ	4-29
認証	4-29
PIN コード	4-30
可変 PIN コード	4-30
暗号化	4-31
Secure Simple Pairing の IO 機能 (SPP サーバーおよび SPP マスタ ホスト モードのみ)	4-32
Bluetooth 無線、リンク、およびバッチ操作	4-33
リニア イメージャー スキャナを使用するように iOS または Android 製品を設定するには	4-33

第5章: ユーザー設定とその他のデジタル スキャナ オプション

はじめに	5-1
スキャン シーケンスの例	5-2
スキャン中のエラー	5-2
ユーザー設定/その他のオプション パラメータのデフォルト値	5-2
ユーザー設定	5-4
デフォルト設定パラメータ	5-4
バージョン通知	5-5
パラメータ バーコードのスキャン	5-5
読み取り成功時のビープ音	5-6
読み取り照明インジケータ	5-6
ビープ音	5-7
電源投入時ビープ音を抑止	5-8
ビープ音の音量	5-8
ビープ音を鳴らす時間	5-9
ハンドヘルド トリガ モード	5-9
ハンズフリー トリガ モード	5-10
ロー パワー モード	5-10
ロー パワー モード移行時間	5-11
プレゼンテーション スリープ モード移行時間	5-12

連結バーコー に詰み取り ちんしん ちんしん ちんしん ちんしん ちんしん ちんしん ちんしん ちんし	5-15
生心ハーコート記の外収 クーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーー	
ユニーク バーコード読み取り	5-15
読み取りセッション タイムアウト	5-16
同一バーコードの読み取り間隔	5-16
異なるバーコードの読み取り間隔	5-16
読み取り照明	5-17
その他のスキャナ パラメータ	5-18
コード ID キャラクタの転送	5-18
プリフィックス/サフィックス値	5-19
スキャン データ転送フォーマット	5-20
FN1 置換値	5-21
「NR (読み取りなし)」メッセージの転送	5-22
非請求ハートビート間隔	5-23
スキャナ パラメータのダンプ	5-24

第6章:キーボードインタフェース

はじめに	 6-1
キーボード インタフェースの接続	 6-2
キーボード インタフェース パラメータのデフォルト	 6-3
キーボード インタフェースのホスト パラメータ	 6-4
キーボード インタフェースのホスト タイプ	 6-4
キーボード インタフェースのタイプ(カントリー コード)	 6-5
不明な文字の無視	 6-7
キャラクタ間ディレイ	 6-7
キーストローク内ディレイ	 6-8
代替用数字キーパッド エミュレーション	 6-8
Caps Lock オン	 6-9
Caps Lock オーバーライド	 6-9
インタフェース データの変換	 6-10
ファンクション キーのマッピング	 6-10
FN1 置換	 6-11
メーク/ブレークを送信する	 6-11
キーボード マップ	 6-12
キーボード インタフェースの ASCII キャラクタ セット	 6-13

第7章: RS-232 インタフェース

はじめに	. 7-1
RS-232 インタフェースの接続	. 7-2
RS-232 パラメータのデフォルト	. 7-3
RS-232 ホストのパラメータ	. 7-4
RS-232 ホスト タイプ	. 7-6
ボーレート	. 7-8
パリティ	. 7-9
ストップ ビットの選択	. 7-9
データ長 (ASCII フォーマット)	. 7-10
受信エラーのチェック	. 7-10
ハードウェア ハンドシェイク	. 7-11
ソフトウェア ハンドシェイク	. 7-13
ホスト シリアル レスポンス タイムアウト	. 7-15
RTS 制御線の状態	. 7-16
<bel> キャラクタによるビープ音</bel>	. 7-16
キャラクタ間ディレイ	. 7-17

Nixdorf のビープ音/LED オプション	7-18
不明な文字の無視	7-18
RS-232 の ASCII キャラクタ セット	7-19

第8章: USB インタフェース

はじめに	. 8-1
USB インタフェースの接続	. 8-2
USB パラメータのデフォルト	. 8-4
USB ホスト パラメータ	. 8-5
USB デバイス タイプ	. 8-5
Symbol Native API (SNAPI) ステータス ハンドシェイク	. 8-6
USB キーボード タイプ (カントリー コード)	. 8-7
キャラクタ間ディレイ (USB 専用)	. 8-9
Caps Lock オーバーライド (USB 専用)	. 8-9
不明な文字の無視 (USB 専用)	. 8-10
不明なバーコードを Code 39 に変換 (USB 専用)	. 8-10
キーパッドのエミュレート	. 8-11
先行ゼロでキーパッを エミュレートする	. 8-11
クイック キーパッド エミュレーション	. 8-12
USB キーボードの FN 1 置換	. 8-12
ファンクション キーのマッピング	. 8-13
Caps Lock のシミュレート	. 8-13
, 大文字 / 小文字の変換	. 8-14
静的 CDC (USB 専用)	. 8-14
オプションの USB パラメータ	. 8-15
ビープ音の無視	. 8-15
バーコード設定の無視	. 8-15
USB のポーリング間隔	. 8-16
USB の ASCII キャラクタ セット	. 8-18

第9章: IBM インタフェース

はじめに	
IBM 468X/469X ホストへの接続	
IBM パラメータのデフォルト	
IBM 468X/469X ホスト パラメータ	
ポート アドレス	
不明バーコードを Code 39 に変換	
オプションの IBM パラメータ	
ビープ音の無視	
バーコード設定の無視	
· · · · · · · · · · · · · · · · · · ·	•••••••••••••••••••••••••••••••••••••••

第 10 章: 123SCAN2

はじめに)-1
123Scan2 との通信)-1
123Scan2 の要件)-2
$\frac{1}{2}$	1-2

第 11 章: シンボル体系

はじめに	11-1
スキャン シーケンスの例	11-1
スキャン中のエラー	11-2

シンボル体系パラメータのデフォルト一覧 UPC/FAN	. 1 1	1	-2 -6
UPC-Δ の有効化 / 無効化	1	1	-6
UPC-F の右动化/無効化	1	1	-6
UPC-E1の有効化/無効化	1	∶1 1	-0 _7
GI U-LI U 行为化/ 無効化 FANI 8/ IANI 8 の右効化 / 無効化	1	11 11	7
EANI 12/JANI 12 の方効化 / 無効化	. 1 1	 1	-7
EAN-15/JAN-15 の有効化/無効化 Bookland EAN の方効化/無効化	. I 1	 1	-0
DOOKIDHU EAN の有効化/ 無効化	ו. ז	 4	-0
UPC/EAN/JAN リノリメノダルの読み取り	. I 4	 4	-9
ユーサか設定 じさるサフリメンダル	. I 4	 4	-12
UPC/EAN/JAN リノリメノダルの読み取り繰返回数	. I 4	 4	12
サフリメフダルコート付き UPC/EAN/JAN の AIM ID フォーマット	. I	 4	-13
UPC-A チェック ナンツトを転送	. I	 4	-14
UPC-E ナエック ナンツトを転送	. 1		-14
UPC-E1 ナエツク ナンツトを転达	. 1	11	-15
	. 1	1	-16
	. 1	1	-17
UPC-E1 フリアンフル	. 1	1	-18
UPC-E を UPC-A に変換する	. 1	1	-19
UPC-E1をUPC-Aに変換する	. 1	1	-19
EAN-8/JAN-8 拡張	. 1	1	-20
Bookland ISBN 形式	. 1	1	-20
UCC クーポン拡張コード	. 1	1	-21
クーポン レポート	. 1	1	-21
ISSN EAN	. 1	1	-22
CODE 128	. 1	1	-23
Code 128 を有効/無効にする	. 1	1	-23
Code 128 の読み取り桁数を設定する	. 1	1	-23
GS1-128 (以前の UCC/EAN-128)を有効/無効にする	. 1	1	-25
ISBT 128 を有効/無効にする	. 1	1	-25
ISBT の連結	. 1	1	-26
ISBT テーブルのチェック	. 1	1	-27
ISBT 連結の読み取り繰返回数	. 1	1	-27
CODE 39	. 1	1	-28
Code 39 を有効/無効にする	. 1	1	-28
Trioptic Code 39 を有効/無効にする	. 1	1	-28
Code 39 を Code 32 に変換	. 1	1	-29
Code 32 プリフィックス	. 1	1	-29
Code 39 の読み取り桁数を設定する	1	1	-30
Code 39 チェック デジットの確認	1	11	-31
Code 39 チェック デジットの転送	1	11	-31
Code 39 Full ASCII 変換	1	11	-32
Code 39 バッファリング - スキャンおよび保存	1	11	-32
データのバッファ	1	1	-33
デジングマンクシンティー	1	11	-33
私区ペランテジノファーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーー	1	1 1	-34
デノングの私と	1	11 11	-0 - 34
私とハラファの起過	. 1 1	 1	24
上のパウファの転送の試1」 CODE 93	. 1 1	11 1	-34
Code 02 左右か/無効にする	. । - ४	 . 4	25
OUUE 3J で1別/ 黒刈I⊂り る Codo 02 の注り取した数を記字す Z	ן. ג	 4	-00 25
CODE 90 の記の取り11図で改たりる	. 1 1	 1	-30 _27
	. I ส	 1	-01 27
OUUC II	. 	 4	-31
LODE TT の読み取り桁数を設定する	. 1	11	-3/
LODE TT ナエツク テンツトの唯認	. 1	1	-39

Code 11 チェック テジットを転送	11-40
Interleaved 2 of 5 (ITF)	11-41
Interleaved 2 of 5 を有効/無効にする	11-41
Interleaved 2 of 5 の読み取り桁数設定	11-41
Interleaved 2 of 5 チェック デジットの確認	11-43
Interleaved 2 of 5 チェック デジットを転送する	11-43
Interleaved 2 of 5 を EAN-13 に変換する	11-44
Discrete 2 of 5 (DTF)	11-45
Discrete 2 of 5 を有効/無効にする	. 11-45
Discrete 2 of 5 の読み取り桁数設定	11-45
Codabar (NW - 7)	11-47
Codabar を有効/無効にする	11_47
Codebar の詰み取り広教設定	11 /7
	. 11-77
ULDI 襦未	. 11-49
NOTIS	11-49
Codabarの人文子または小文子のスタート/ストッノキャラクタの検由	11-50
	11-51
MSI を有効/無効にする	11-51
MSIの読み取り桁数設定	11-51
MSI チェック デジット	11-53
MSI チェック デジットの転送	11-53
MSI チェック デジットのアルゴリズム	11-54
Chinese 2 of 5	11-55
Chinese 2 of 5 を有効/無効にする	11-55
Matrix 2 of 5	11-56
Matrix 2 of 5 を有効/無効にする	11-56
Matrix 2 of 5 の読み取り桁数設定	11-56
Matrix 2 of 5 チェック デジット	11-58
Matrix 2 of 5 チェック デジットを転送	11-58
Korean 3 of 5	11-59
Korean 3 of 5 を有効/無効にする	11-59
反転 1D	11-60
GS1 DataBar	11-61
GS1 DataBar-14	11-61
GS1 DataBar Limited	11-61
GS1 DataBar Expanded	11_62
CC1 DataDar Lipitad の工作性 L 炎 II	11 62
GST DataDat Linnieu の正確注レベル	11-02
GS1 DataBar を UPC/EAN に変換	11-64
有度レヘル	11-65
精度レベル1	11-65
精度レベル 2	11-65
精度レベル3	11-65
精度レベル4	11-66
正確性レベル	11-67
キャラクタ間ギャップ サイズ	11-68

第 12 章: アドバンスド データ フォーマッティング

はじめに	2-	-1
------	----	----

付録 A: 標準のデフォルト設定パラメータ

付録 B: プログラミング リファレンス

シンボル コード ID	B-1
$AIM \ \exists -F \ ID \ \ldots$	B-2

付録 C: サンプル バーコード

Code 39	C-1
UPC/EAN	C-1
UPC-A、100%	C-1
EAN-13、100%	C-2
Code 128	C-2
Interleaved 2 of 5	C-2
GS1 DataBar	C-3
GS1 DataBar-14	C-3

付録 D: 数値バーコード

数値バーコード	D-1
キャンセル	D-3

付録 E: 英数字バーコード

英数字キーボード E-1

付録 F: ASCII キャラクタ セット

付録 G: 通信プロトコル機能

通信 (ケーブル)インタフェースでサポートされる機能	G-1
CR0078-S (標準クレードル) 使用時の Ll4278	G-1
CR0078-P (プレゼンテーション クレードル) 使用時の LI4278	G-3

索引

用語集

このガイドについて

はじめに

『LI4278 プロダクト リファレンス ガイド』では、LI4278 リニア イメージャー スキャナおよびクレードルの設定、操作、メン テナンス、およびトラブルシューティングの一般的な方法について説明します。

スキャナの構成

表 2-1 は、リニア イメージャー スキャナの構成の一覧です。

1

注 最新の使用可能なモデル構成については、Solution Builder で確認してください。

表 2-1	リニア	イメ・	ージャー	・スキャ	ナの構成
-------	-----	-----	------	------	------

地域	部品番号:	説明
北米	LI4278-SR20007WR	LI4278 Linear Imager - トワイライト ブラック
	LI4278-SR20001WR	Ll4278 Linear Imager - キャッシュ レジスター ホワイト
	LI4278-PRBU2100AWR	キット:Ll4278 Linear Imager、プレゼンテーション クレードル (無線/ 充電)、USB シリーズ A、7 フィート ストレート ケーブル - ブラッ ク、PS (カントリー LC が必要)
	LI4278-PRWU2100AWR	キット:Ll4278 Linear Imager、プレゼンテーション クレードル (無線/ 充電)、USB シリーズ A、7 フィート ストレート ケーブル - ホワイ ト、PS (カントリー LC が必要)
	LI4278-TRBU0100ZWR	キット :Ll4278 Linear Imager、クレードル (無線/充電)、USB シ リーズ A、7 フィート ストレート ケーブル - ブラック、P/S は不要
	LI4278-TRWU0100ZWR	キット :Ll4278 Linear Imager、クレードル (無線/充電)、USB シ リーズ A、7 フィート ストレート ケーブル - ホワイト、P/S は不要

表 2-1 リニア イメージャー スキャナの構成 (続き)

地域	部品番号:	説明
EMEA	LI4278-SR20007WR	LI4278 Linear Imager - トワイライト ブラック
	LI4278-SR20001WR	LI4278 Linear Imager - キャッシュ レジスター ホワイト
	LI4278-PRBU2100AWR	キット:Ll4278 Linear Imager、プレゼンテーション クレードル (無線/ 充電)、USB シリーズ A、7 フィート ストレート ケーブル - ブラッ ク、PS (カントリー LC が必要)
	LI4278-PRWU2100AWR	キット:Ll4278 Linear Imager、プレゼンテーション クレードル (無線/ 充電)、USB シリーズ A、7 フィート ストレート ケーブル - ホワイ ト、PS (カントリー LC が必要)
	LI4278-TRBU0100ZER	キット :Ll4278 Linear Imager、クレードル (無線/充電)、USB シ リーズ A、7 フィート ストレート ケーブル - ブラック、P/S は不要
	LI4278-TRWU0100ZER	キット:Ll4278 Linear Imager、クレードル (無線/充電)、USB シ リーズ A、7 フィート ストレート ケーブル - ホワイト、P/S は不要
中南米	LI4278-SR20007WR	LI4278 Linear Imager - トワイライト ブラック
	LI4278-SR20001WR	LI4278 Linear Imager - キャッシュ レジスター ホワイト
	LI4278-PRBU2100ALR	キット:Ll4278 Linear Imager、プレゼンテーション クレードル (無線/ 充電)、USB シリーズ A、7 フィート ストレート ケーブル - ブラッ ク、PS (カントリー LC が必要)
	LI4278-PRWU2100ALR	キット:Ll4278 Linear Imager、プレゼンテーション クレードル (無線/ 充電)、USB シリーズ A、7 フィート ストレート ケーブル - ホワイ ト、PS (カントリー LC が必要)
	LI4278-TRBU0100ZLR	キット:Ll4278 Linear Imager、クレードル (無線/充電)、USB シ リーズ A、7 フィート ストレート ケーブル - ブラック、P/S は不要
	LI4278-TRWU0100ZLR	キット:Ll4278 Linear Imager、クレードル (無線/充電)、USB シ リーズ A、7 フィート ストレート ケーブル - ホワイト、P/S は不要
APAC	LI4278-SR20007WR	LI4278 Linear Imager - トワイライト ブラック
	LI4278-SR20001WR	LI4278 Linear Imager - キャッシュ レジスター ホワイト
	LI4278-PRBU2100AAR	キット :Ll4278 Linear Imager、プレゼンテーション クレードル、 USB シリーズ A、7 フィート ストレート ケーブル - ブラック、 PS (カントリー LC が必要)
	LI4278-PRWU2100AAR	キット :Ll4278 Linear Imager、プレゼンテーション クレードル、 USB シリーズ A、7 フィート ストレート ケーブル - ホワイト、 PS (カントリー LC が必要)
	LI4278-TRBU0100ZAR	キット:Ll4278 Linear Imager、クレードル (無線/充電)、USB シ リーズ A、7 フィート ストレート ケーブル - ブラック、P/S は不要
	LI4278-TRWU0100ZAR	キット:Ll4278 Linear Imager、クレードル (無線/充電)、USB シ リーズ A、7 フィート ストレート ケーブル - ホワイト、P/S は不要

表 2-1 リニア イメージャー スキャナの構成 (続き)

地域	部品番号:	説明
政府(連邦政府/	LI4278-SR20007WR	LI4278 Linear Imager - トワイライト ブラック
Sal)	LI4278-SR20001WR	LI4278 Linear Imager - キャッシュ レジスター ホワイト
	LI4278-PRBU2100AWR	キット :Ll4278 Linear Imager、プレゼンテーション クレードル (無線/ 充電)、USB シリーズ A、7 フィート ストレート ケーブル - ブラッ ク、PS (カントリー LC が必要)
	LI4278-PRWU2100AWR	キット :Ll4278 Linear Imager、プレゼンテーション クレードル (無線/ 充電)、USB シリーズ A、7 フィート ストレート ケーブル - ホワイ ト、PS (カントリー LC が必要)
	LI4278-TRBU0100ZWR	キット :Ll4278 Linear Imager、クレードル (無線/充電)、USB シ リーズ A、7 フィート ストレート ケーブル - ブラック、P/S は不要
	LI4278-TRWU0100ZWR	キット:Ll4278 Linear Imager、クレードル (無線/充電)、USB シ リーズ A、7 フィート ストレート ケーブル - ホワイト、P/S は不要

関連する製品ラインの構成

表 2-2 は、LI4278 リニア イメージャー スキャナに関連する製品ラインの構成の一覧です。

- すべての取り付け可能なアクセサリに関する追加情報
 - すべてのオプションのアクセサリ
 - 最新の使用可能な構成

表 2-2 クレードル、電源、バッテリ、その他の構成

製品ライン	部品番号	説明
クレードル	STB4208-C0001R	クレードル : 充電のみ - ホワイト
	STB4208-C0007R	クレードル : 充電のみ - トワイライト ブラック
	STB4278-C0001WR	クレードル : 無線と充電、マルチインタフェース - ホワイト
	STB4278-C0007WR	クレードル : 無線と充電、マルチインタフェース - トワイライト ブラック
	CR0078-SC10001WR	クレードル標準 (無線、インタフェース、充電、ホワイト)
	CR0078-SC10007WR	クレードル標準 (無線、インタフェース、充電、ブラック)
	CR0008-SC10007R	クレードル標準(充電のみ、ブラック)
	CR0008-SC10001R	クレードル標準(充電のみ、ホワイト)
	CR0078-PC1F007WR	クレードル プレゼンテーション (無線、インタフェース、充電、ブラック)
	STB4208-C0001R	クレードル : 充電のみ - ホワイト
HoldersIntell	11-66553-06R	壁面設置ホルダー
その他	50-12500-066	リスト ストラップ
電源/パッテリ	BTRY-LS42RAA0E-01	LS4278 予備バッテリ (LI4278 に対応)

表 2-2 クレードル、電源、バッテリ、その他の構成(続き)

製品ライン	部品番号	説明
ユニバーサル ケーブル	CBA-D02-C09ZAR	ケーブル - スキャナ エミュレーション: 9 フィート (2.8m) コイル形状、デ コード機能なし
	CBA-K01-S07PAR	ケーブル - キーボード インタフェース :7 フィート (2m) ストレート形状、 PS/2 電源ポート
	CBA-K02-C09PAR	ケーブル - キーボード インタフェース :9 フィート (2.8m) コイル形状、 PS/2 電源ポート
	CBA-K08-C20PAR	ケーブル - キーボード インタフェース :20 フィート (6m) コイル形状、PS/2 電源ポート
	CBA-M01-S07ZAR	ケーブル - IBM:468x/9x、7 フィート (2m) ストレート形状、ポート 9B
	CBA-M02-C09ZAR	ケーブル - IBM:468x/9x、9 フィート (2.8m) コイル形状、ポート 9B
	CBA-M03-S09EAR	ケーブル - IBM:468x/9x、9 フィート (2.8m) ストレート形状、ポート 9B (EAS 対応)
	CBA-M04-S07ZAR	ケーブル - IBM:468x/9x、7 フィート (2m) ストレート形状、ポート 5B
	CBA-M10-C12ZAR	ケーブル - IBM:468x/9x、12 フィート (3.7m) コイル形状、ポート 9B
	CBA-R01-S07PAR	ケーブル - RS232:DB9 メス型コネクタ、7 フィート (2m) ストレート形状、 TxD 2
	CBA-R02-C09PAR	ケーブル - RS232:DB9 メス型コネクタ、9 フィート (2.8m) コイル形状、 TxD 2
	CBA-R03-C12PAR	ケーブル - RS232:DB9 メス型コネクタ、12 フィート (3.6m) コイル形状、 TxD 2
	CBA-R06-C20PAR	ケーブル - RS232:DB9 メス型コネクタ、20 フィート (6m) コイル形状、 TxD 2
	CBA-R08-S07ZAR	ケーブル - RS232:7 フィート (2m) ストレート形状、Nixdorf Beetle - 5V 直接 電源
	CBA-R09-C09ZAR	ケーブル - RS232:9 フィート (2.8m) コイル形状、Nixdorf Beetle - 5V 直接 電源
	CBA-R10-S07ZAR	ケーブル - RS232:7 フィート (2m) ストレート形状、Nixdorf Beetle - 直接電源
	CBA-R11-C09ZAR	ケーブル - RS232:9 フィート (2.8m) コイル形状、Nixdorf Beetle - 直接電源
	CBA-R13-S09EAR	ケーブル - RS232:9 フィート (2.8m) ストレート形状、Nixdorf Beetle - 直接 電源 (EAS 対応)
	CBA-R22-C09ZAR	ケーブル - RS232:9 フィート (2.8m) コイル形状、Fujitsu T POS 500 ICL
	CBA-R23-S07ZAR	ケーブル - RS232:7 フィート (2m) ストレート形状、Fujitsu T POS 500 ICL
	CBA-R24-C20ZAR	ケーブル - RS232:20 フィート (6m) コイル形状、Fujitsu T POS 500 ICL
	CBA-R28-C09ZAR	ケーブル - RS232:9 フィート (2.8m) コイル形状、Verifone Ruby
	CBA-R32-S07PAR	ケーブル - RS232:DB9 メス型コネクタ、7 フィート (2m) ストレート形状、 TxD 2、True Converter
	CBA-R36-C09ZAR	ケーブル - RS232:DB9 メス型コネクタ、9 フィート (2.8m) コイル形状、電源 ピン9
	CBA-R46-C09ZAR	ケーブル - RS232:DB9 メス型コネクタ、9 フィート (2.8m) コイル形状、 Power Pin 9、TxD 2、True Converter
	CBA-S01-S07ZAR	シナプス アダプタ ケーブル:7 フィート ストレート形状ケーブル コード S01

表 2-2 クレードル、電源、バッテリ、その他の構成(続き)

製品ライン	部品番号	説明
汎用ケーブル	CBA-S03-C09ZAR	シナプス アダプタ ケーブル:9 フィート コイル形状ケーブル コード S03
(続き)	CBA-S04-C16ZAR	シナプス アダプタ ケーブル:16 フィート コイル形状
	CBA-S05-S09EAR	シナプス アダプタ ケーブル (EAS 9 フィート対応) ストレート形状ケーブ ル コード S05
	CBA-U01-S07ZAR	ケーブル - USB: シリーズ A コネクタ、7 フィート (2m) ストレート形状
	CBA-U03-S07ZAR	ケーブル - USB:Power Plus コネクタ、7 フィート (2m) ストレート形状
	CBA-U06-S09EAR	ケーブル - USB: シリーズ A コネクタ、9 フィート (2.8m) ストレート形状 (EAS 対応)
	CBA-U08-C15ZAR	ケーブル - USB:Power Plus コネクタ、15 フィート (4.6m) コイル形状
	CBA-U09-C15ZAR	ケーブル - USB: シリーズ A コネクタ、15 フィート (4.6m) コイル形状
	CBA-U10-S15ZAR	ケーブル - USB: シリーズ A コネクタ、15 フィート (4.6m) ストレート形状
	CBA-U12-C09ZAR	ケーブル - USB: シリーズ A コネクタ、9 フィート (2.8m) コイル形状
	CBA-U14-C09ZAR	ケーブル - USB:Power Plus コネクタ、9 フィート (2.8m) コイル形状
	CBA-U15-S15ZAR	ケーブル - USB:Power Plus コネクタ、15 フィート (4.6m) ストレート形状
	CBA-D01-S07ZAR	ケーブル - スキャナ エミュレーション:7 フィート (2m) ストレート形状、 デコード機能なし
	CBA-K05-S15PAR	ケーブル - キーボード インタフェース :15 フィート (4.6m) ストレート形状、 PS/2 電源ポート
	CBA-K06-C12PAR	ケーブル - キーボード インタフェース :12 フィート (3.7m) コイル形状、 PS/2 電源ポート
	CBA-R04-S09FAR	ケーブル - RS232:DB9 メス型コネクタ、9 フィート (2.8m) ストレート形状、 TxD 2 (EAS 対応)
	CBA-R12-C12ZAR	ケーブル - RS232:12 フィート (3.7m) コイル形状、Nixdorf Beetle - 直接電源
	CBA-R18-C09ZAR	ケーブル - RS232:DB9 メス型コネクタ、9 フィート (2.8m) コイル形状、ピン 1 の電源
	CBA-R40-C09SAR	ケーブル - RS232: スプリット DB9 メス型コネクタと電源経路、9 フィート (2.8m) コイル形状
	CBA-R41-S12ZAR	ケーブル - RS232:12 フィート (3.7m) ストレート形状、Nixdorf Beetle - 直 接電源
	CBA-W01-S07ZAR	ケーブル - ワンド:7 フィート (2m) ストレート形状
	CBA-W02-C09ZAR	ケーブル - ワンド:9 フィート (2.8m) コイル形状

表 2-2 クレードル、電源、バッテリ、その他の構成(続き)

製品ライン	部品番号	説明
電源および	PWRS-14000-253R	電源:5VDC、850MA、US-CA-MX-JP-TW
電源コート	PWRS-14000-256R	電源:5VDC、850MA、EU-UK-EMEA-RU-ZA
	50-14000-259R	電源:5VDC、850MA、ARGENTINA-UY
	PWRS-14000-255R	電源 : 5VDC、850MA、ブラジル/韓国、別途電源コードの注文が必要
	PWRS-14000-257R	電源:5VDC、850MA、CHINA
	PWRS-14000-258R	電源:5VDC、850MA、AU-HK-NZ
	PWRS-14000-148R	電源 (プレゼンテーション クレードル) - 追加で各国対応の電源コードが必要
	PWRS-14000-253R	電源:5VDC、850MA、US-CA-MX-JP-TW

章の説明

このガイドは、次の章で構成されています。

- 第1章、最初のステップでは、製品の概要、開梱、およびケーブルの接続方法について説明します。
- 第2章、スキャンでは、リニアイメージャースキャナの部品、ビープ音とLEDの定義、およびリニアイメージャースキャナの使用方法について説明します。
- 第3章、メンテナンス、トラブルシューティング、技術的な仕様では、リニアイメージャースキャナおよびクレードルのお手入れのしかた、トラブルシューティング、および技術的な仕様について説明します。
- 第4章、無線通信では、無線通信で使用可能な動作モードと機能について説明しています。またこの章では、リニアイメージャースキャナを設定するために必要なプログラミングバーコードについても説明します。
- 第5章、ユーザー設定とその他のデジタルスキャナオプションでは、リニアイメージャースキャナのユーザー設 定機能を選択するプログラミングバーコードと、データのホストデバイスへの転送方法をカスタマイズするために よく使用されるバーコードについて説明します。
- 第6章、キーボードインタフェースでは、リニアイメージャースキャナおよびクレードルのキーボードインタフェース操作の設定方法について説明します。
- 第7章、RS-232 インタフェースでは、リニア イメージャー スキャナおよびクレードルの RS-232 操作の設定方法 について説明します。
- 第8章、USB インタフェースでは、リニア イメージャー スキャナおよびクレードルの USB 操作の設定方法について説明します。
- 第9章、IBM インタフェースでは、IBM 468X/469X POS システムでのリニア イメージャー スキャナおよびクレー ドルの設定方法について説明します。
- 第 10 章、123SCAN2 (PC ベースのスキャナの設定ツール) では、迅速かつ簡単にスキャナのカスタム セットアップを行う方法について説明ます。
- 第 11 章、シンボル体系では、すべてのバーコード形式について説明し、リニア イメージャー スキャナでこれらの 機能を選択するうえで必要なプログラミング バーコードについて説明します。
- 第12章、アドバンスドデータフォーマッティングについて簡単に説明します。『ADF Programmer Guide』へのリファレンスも含まれています。
- 付録 A、標準のデフォルト設定パラメータは、すべてのホストデバイスやその他のリニアイメージャースキャナのデフォルト値の一覧です。
- 付録 B、プログラミング リファレンス は、AIM コード ID、ASCII 変換、およびキーボードマップの一覧です。
- 付録 C、サンプル バーコード では、サンプル バーコードを掲載しています。
- 付録 D、数値バーコード では、特定の数値が必要なパラメータをスキャンするための数字バーコードを掲載しています。
- 付録 E、英数字バーコードでは、ADF 規則を設定する際に使用する英数字キーボードを示すバーコードを掲載しています。
- 付録 F、ASCII キャラクタ セット は、ASCII 文字の値の一覧です。
- 付録 G、通信プロトコル機能には、通信プロトコルによりサポートされるスキャナ機能が記載されています。

表記規則

本書では、次の表記規則を使用しています。

- 斜体は、本書および関連文書の章およびセクションの強調に使用します。
- 太字は、パラメータの名前とオプションの強調に使用します。
- バレット (•) は、以下の事項を示します。
 - 実行する操作
 - 代替方法のリスト
 - 実行する必要はあるが、順番どおりに実行しなくてもかまわない手順
- 順番どおりに実行する必要のある手順(順を追った手順)は、番号付きのリストで示されます。
- プログラミング バーコード メニューでは、デフォルトのパラメータ設定にアスタリスク (*) を付けています。

*はデフォルトを示す *ボーレート 9600 ------ 機能/オプション

 \checkmark

注 この記号は、注意事項や重要事項を示します。この注意事項を読まなくても、スキャナ、機器、またはデータに物理的な損害が生じるわけではありません。

注意 この記号が付いた情報を無視した場合、データまたは機器に損害が生じる場合があります。

警告!この記号が付いた情報を無視した場合、身体に深刻な傷害が生じる場合があります。

関連文書

- 『LI4278 クイック スタート ガイド (p/n 72-154896-xx)』では、ユーザーがリニア イメージャー スキャナの使用を開 始するための一般的な情報を提供しています。基本的な操作方法およびバーコードの使用開始方法についても説明 します。
- 『CR0078-S/CR0008-S クレードル クイック リファレンス ガイド (p/n 72-135874-xx)』では、充電専用クレードル またはホスト インタフェース クレードルのセットアップと使用について説明しています。セットアップや取り付け の手順についても説明しています。
- 『CR0078-P クレードル クイック リファレンス ガイド (p/n 72-138860-xx)』では、クレードルに関する一般的な情報を提供しています。セットアップや使用方法についても説明しています。

本書およびすべてのガイドの最新版は、<u>http://www.zebra.com/support</u>から入手可能です。

サービスに関する情報

本機器の使用中に問題が発生する場合は、お客様の使用環境を管理する技術サポートまたはシステム サポートにお問い合わせください。本機器に問題がある場合は、各地域の技術サポートまたはシステム サポートの担当者が、次のサイトに問い合わせを行います。http://www.zebra.com/support

Zebra サポートへのお問い合わせの際は、以下の情報をご用意ください。

- 装置のシリアル番号
- モデル番号または製品名
- ソフトウェアのタイプとバージョン番号

Zebra では、サービス契約で定められた期間内に電子メール、電話、またはファックスでお問い合わせに対応いたします。

Zebra サポートが問題を解決できない場合、修理のため装置をご返送いただくことがあります。具体的な手順については その際にご案内します。Zebra は、承認済みの梱包箱を使用せずに発生した搬送時の損傷について、その責任を負わない ものとします。装置を不適切な形で搬送すると、保証が無効になる場合があります。

ご使用のビジネス製品を Zebra ビジネス パートナーから購入された場合、サポートについては購入先のビジネス パート ナーにお問い合わせください。

第1章 最初のステップ

はじめに

Zebra の最初の高性能リニア イメージャー ファミリである、ワールド クラスの Ll4278 リニア イメージャー スキャナは、低コストでありながら、既存のすべてのリニア イメージャーより優れた性能を備えたコードレス 1D バーコード スキャナ を備えています。Zebra は、本製品により、イメージャー バーコード リーダ市場におけるリーダーとしての地位を確立しました。

インタフェース

CR0078-S クレードルは、次のインタフェースをサポートします。ただし、CR0078-P クレードルは、Wand Emulation、 Scanner Emulation、シナプスをサポートしていません。

表 1-1 インタフェース サポート - CR0078-S / CR0078-P クレードル

		クレードル	<i>ѵ</i> のサポート
1 29 21-X		CR0078-S	CR0078-P
ホストへの USB 接続	クレードルは、USB ホストを自動検出します。デフォルトは、 HID キーボード インタフェース タイプです。他の USB インタ フェース タイプを選択する場合は、プログラミングバーコード メニューをスキャンしてください。Windows® 環境では、英語 (U.S.)、ドイツ語、フランス語、フランス語(カナダ)、スペイン 語、イタリア語、スウェーデン語、英語(U.K.)、ポルトガル語 (ブラジル)、日本語のキーボードをサポートしています。	x	x
ホストへの標準 RS-232 接続	バーコード メニューをスキャンして、クレードルとホストが適 切に通信できるようにセットアップしてください。	x	x
ホストへのキーボード インタ フェース接続	スキャンされたデータはキー入力として解釈されます。 Windows [®] 環境では、英語(U.S.)、ドイツ語、フランス語、フ ランス語(カナダ)、スペイン語、イタリア語、スウェーデン 語、英語(U.K.)、ポルトガル語(ブラジル)、日本語のキーボー ドをサポートしています。	x	x
IBM [®] 468X/469X ホストへの 接続	バーコード メニューをスキャンして、クレードルと IBM 端末が 通信できるようにセットアップしてください。	x	x
ホストへのワンド エミュレー ション接続	クレードルはデータをワンド データとして収集し読み取る、簡 易入力端末、コントローラ、またはホストに接続されています。	x	
ホストへのスキャナ エミュレー ション接続	クレードルはデータを収集してホスト用に解釈する簡易入力端 末、コントローラに接続されています。	x	
シナプス機能	シナプス ケーブルとシナプス アダプタ ケーブルを使用して、 さまざまな種類のホスト システムに接続できます。 クレードル はホストを自動検出します。	x	
123Scan ² を使用した設定	Zebra のスキャナを迅速かつ簡単にカスタム設定できる、PC ベースのソフトウェア ツールです。	х	x

リニア イメージャー スキャナとクレードルの開梱

箱からスキャナとクレードルを取り出し、損傷していないかどうかを確認します。配送中に機器が損傷していた場合は、 Zebra Support までご連絡ください。連絡先については、(xxi ページ)を参照してください。箱は、保管しておいてください。 い。これは承認された梱包材です。修理のために機器を返送するときには必ずこれを使用してください。

最初のステップ 1-3

各部の名称

1 - 4 LI4278 プロダクト リファレンス ガイド

CR0078-S/CR0008-S シリーズ クレードル

図 1-3 CR0078-S/CR0008-S シリーズ クレードル正面図

最初のステップ 1-5

図 1-4 CR0078-S/CR0008-S シリーズ クレードル背面図

CR0078-P シリーズ クレードル

図 1-5 CR0078-P クレードルの上面

図 1-6 CR0078-P クレードルの底面

リニア イメージャー スキャナ クレードル

スキャナのクレードル (CR0078-S と CR0078-P) は、リニア イメージャー スキャナのスタンド、充電器、ホスト インタ フェースとして機能します。クレードルはデスクトップ上に設置します。CR0078-S クレードルは、垂直面 (壁など)に取 り付けることもできます。取り付けオプションと手順の詳細については、クレードルに付属のマニュアルを参照してくだ さい。

CR0078-S クレードルは、無線機能付き充電クレードルとしても、充電専用クレードルとしても使用できます。CR0078-P クレードルは、無線機能付き充電クレードルとしてのみ使用できます。2 つのバージョンの相違点は次のとおりです。

- 無線機能付き充電クレードル:コードレス リニア イメージャー スキャナとクレードルをペアリングした場合は、リニア イメージャー スキャナとホスト コンピュータ間のすべての通信はクレードル経由で行われます。各バーコードには、プログラミング方法またはバーコード パターン固有のその他データが含まれます。リニア イメージャースキャナは、クレードルとペアリングされ、Bluetooth Technology Profile Support 経由でバーコード データをクレードルに転送します。その後、情報を解釈するため、クレードルはインタフェース ケーブルを介してホスト コンピュータへ情報を送信します。
- 充電専用クレードル:このクレードルは、スタンドおよび充電器として機能します。無線機能と通信機能は組み込まれていません。

 注 リニアイメージャースキャナ、クレードル、およびホスト間の通信の詳細については、第4章、無線通信を参照して ください。

<mark>表 1-2</mark> では、CR0078-S クレードルと CR0078-P クレードルとの主な違いを示しています。

機能	CR0078-S	CR0078-P
スキャン	ハンドヘルド スキャン	ハンズフリーまたはハンドヘルド スキャン
Bluetooth	Bluetooth または充電専用 (CR0008-S)	Bluetooth
ペアリング	クレードルあたり最大 3 台のスキャナとペ アリング	1 台のクレードルあたり最大 7 台のスキャナ のペアリング
呼び出し	使用不可	置き場所を間違えたスキャナを呼び出す機能
充電	可能な場合にはホストの電源を介して給電 します。またはオプションの 5V 電源で給 電します。	12V 電源が必要
インタフェース	ー般的なインタフェースをサポートします (詳細なリストについては、3-9 ページの技 術仕様を参照)。	ワンド エミュレーション、スキャナ エミュ レーション、およびシナプスを除く、一般的 に使用されているインタフェースをサポート
USB ケーブル	標準ユニバーサル USB ケーブル	シールド モジュラ プラグ付きのユニバーサ ル ケーブルが必要

表1-2 クレードルの機能

CR0078-S/CR0008-S シリーズ クレードルの接続

重要 リニア イメージャー スキャナとクレードルが正常に動作するように、次の手順でインタフェース ケーブルと (必要に応じて) 電源を接続してください。

- 1. 電源がクレードルに接続されている場合は、取り外します。図 1-7を参照してください。
- 2. インタフェース ケーブル (CR0078-S のみ)を使用する場合は、ケーブルをクレードルのホスト ポートに接続します。
- 3. インタフェース ケーブル (CR0078-S のみ) に接続されている電源を使用する場合は、この電源をインタフェース ケーブル上の電源コネクタに接続し、もう一端を AC 電源に接続します。
- インタフェース ケーブルのもう一端をホスト コンピュータ上の適切なポートに接続します (ホスト接続に関する詳細については、該当するホストの章を参照してください)。
- 5. 外部電源を使用する場合は (インタフェースに必要な場合、またはリニア イメージャー スキャナの急速充電を可能に する場合)、電源ケーブルをクレードル背面の電源ポートに接続し、外部電源を適切なACコンセントに接続します。 詳細については、『CR0078-S/CR0008-S Cradle Quick Reference Guide』を参照してください。

図 1-7 CR0078-S/CR0008-S クレードルへのケーブルの接続

- 6. インタフェース ケーブルをケーブル用のフックに通し、ホスト ケーブルと電源ケーブルをそれぞれのケーブル溝に 沿って配線します (必要な場合)。
- 必要に応じて、クレードルを設置します(クレードルの設置の詳細については、クレードルに付属のドキュメントを 参照してください)。

注ホストケーブルを交換する前に電源を切り離してください。そうしないと、クレードルが新しいホストを認識できない場合があります。さまざまなホストでさまざまなケーブルが必要になります。各ホストに記載されているコネクタは、あくまで例です。コネクタはイラストと異なる場合がありますが、クレードルに接続する手順は同じです。

CR0078-S/CR0008-S クレードルへの給電

CR0078-S/CR0008-S クレードルは、次の2つの電源のいずれかから給電されます。

- 外部電源
- ホストに接続されている場合は、ホスト ケーブルを介して給電される (CR0078-S のみ)

クレードルは、電源を供給しているのがホストなのか、外部電源なのかを検出します。ホストからの電源供給があっても、 利用できる外部電源がある場合は、常にそこから電力を供給します。

CR0078-S クレードルが USB インタフェースを介してホストに接続されている場合は、外部電源の代わりに USB ポート によって電力を供給できます。USB ホストからの給電では充電に制限事項があります。USB ホストからの充電は、外部 電源から充電する場合より時間がかかります。 CR0078-P シリーズ クレードルの接続

重要 リニア イメージャー スキャナとクレードルの正しい動作のため、次の手順でインタフェース ケーブルと電源を接続し てください。

- インタフェース ケーブルをクレードルのホスト ポートに接続します。
- 2. インタフェース ケーブルのもう一方のコネクタをホストに接続します。
- 3. 電源をクレードルの電源ポートに接続します。
- 4. 適切なケーブルを電源および AC 電源に接続します。
- 5. インタフェース ケーブルをケーブル用のフックに通し (図 1-6、CR0078-P クレードルの底面を参照)、ホスト ケーブ ルと電源ケーブルをそれぞれのケーブル溝に沿って配線します。
- 6. 必要な場合(非自動検出インタフェースの場合)、適切なホストバーコードをスキャンします。詳細については、 『CR0078-P Cradle Quick Reference Guide』を参照してください。

図 1-8 CR0078-P クレードルへのケーブルの接続

CR0078-P クレードルへの電源供給

CR0078-P クレードルには、外部電源から給電します。

CR0078-S クレードルは、外部電源の代わりにホストから給電することができます。CR0078-P は、外部電源からの 注 み給電できます。

短時間で再充電するには、外部電源を使用することをお勧めします。

ホストへの接続の切断

スキャンしたデータがクレードルの接続先ホストに転送されない場合は、すべてのケーブルがしっかりと接続されている ことと、電源が適切な AC コンセントに接続されていることを確認します。それでもスキャンしたデータがホストに転送 されない場合は、ホストへの接続を再確立してください。

- 1. クレードルから電源ケーブルを取り外します。
- 2. クレードルからホスト インタフェース ケーブルを取り外します。
- 3. 3秒間待機します。
- 4. ホストインタフェースケーブルをクレードルに接続し直します。
- 5. 必要に応じて、電源をクレードルに接続し直します。
- 6. ペアリングのバーコードをスキャンし、クレードルとのペアリングを確立し直します。

クレードルの取り付け

CR0078-S クレードルの設置の詳細については、クレードルに付属するマニュアルを参照してください。

リニア イメージャー スキャナ バッテリの交換

バッテリは出荷時にリニア イメージャー スキャナのハンドル内の収納部に装着されています。バッテリを交換するには、 次の手順に従います。

- 1. リニア イメージャー スキャナ底部のネジをプラス ドライバで反時計回りに回してラッチを解除します。
- 2. ラッチを取り外します。
- **3.** バッテリがすでに装着されている場合は、リニア イメージャー スキャナを直立させて、バッテリをスライドさせな がら取り出し、バッテリの接続端子を外します。バッテリのコネクタ クリップを外します。

図1-9 バッテリの取り付け

- **4.** 各コネクタ クリップの接点の向きを合わせ、新しいバッテリのコネクタ クリップをリニア イメージャー スキャナ底 部のコネクタ クリップに接続します。
- 5. 新しいバッテリをバッテリ受け内へスライドし、バッテリのリード線が見えることを確認します。バッテリをバッテ リ受けにしっかり取り付けます。
- 6. 接続してラッチを閉じます。
- リニア イメージャー スキャナ底部のネジをプラスドライバで軽く押し込み、時計回りに回してラッチをロックします。

リニア イメージャー スキャナ バッテリの充電

リニア イメージャー スキャナを初めて使用する前に、リニア イメージャー スキャナのバッテリをフル充電しておきます。 バッテリを充電するには、リニア イメージャー スキャナをクレードルに装着し、リニア イメージャー スキャナの底部に ある金属製の接触部がクレードル上の接触部に触れていることを確認してください。完全に放電したバッテリをフル充電 するには、外部電源を使用する場合で通常3時間、充電に対応したホストを使用する場合で通常5時間かかります。

バッテリ充電 LED インジケータについては、表 1-3 と表 2-2 (2-5 ページ) を参照してください。バッテリの再調整 LED インジケータについては、表 1-4 (1-13 ページ) を参照してください。

注意 バッテリが不適切な温度になるのを避けるため、必ず気温 0 ~ 40 °C (公称)、5 ~ 35 °C (推奨)の範囲内で充電して ください。

表 1-3 充電時の LED の定義

LED 表示	説明
緑色のゆっくりとした連 続した点滅	バッテリ温度に関して重大ではない問題が発生しました。バッテリの温度が、通常の動作温度以上ま たは以下になっています。 これが発生した場合には、リニア イメージャー スキャナの使用を中止し、リニア イメージャー ス キャナを通常の動作温度の範囲内にある場所に移動してください。バッテリの温度を通常の動作温度 に戻す間、スキャナはクレードルにセットしたままで構いません。 注:適切な充電温度については、表 3-3 (3-10 ページ)を参照してください。
赤および緑色で連続して 点滅	バッテリ温度に関して重大な問題が発生しました。バッテリの温度が、通常の動作温度以上または以下になっています。 これが発生した場合には、リニア イメージャー スキャナの使用を中止し、リニア イメージャー スキャナを通常の動作温度の範囲内にある場所に移動してください。バッテリの温度を通常の動作温度に戻す間、スキャナはクレードルにセットしたままで構いません。 注:適切な充電温度については、表 3-3 (3-10 ページ)を参照してください。
緑色の速く連続した点滅	リニア イメージャー スキャナは充電中です。
緑色で点灯	リニア イメージャー スキャナの充電が完了しました。
赤色	バッテリを充電する必要があります。

リニア イメージャー スキャナ バッテリをオフにする

リニア イメージャー スキャナを長期間保管したり、持ち運んだりする場合は、NiMH バッテリの電源をオフにします。

1. 次の「**バッテリ オフ**」のバーコードをスキャンします。

バッテリ オフ

2. バッテリの電源を再び入れるには、リニアイメージャースキャナをクレードルに装着します。
リニア イメージャー スキャナ バッテリの再調整

リニア イメージャー スキャナ NiMH バッテリの最適なパフォーマンスを維持するには、約1年に1回バッテリの再調整を 行います。

バッテリの再調整を始めるには、次の手順に従います。

1. 次の「**バッテリの再調整**」バーコードをスキャンします。

バッテリの再調整

2. リニア イメージャー スキャナをクレードルに装着します。

注

- バッテリの再調整の途中でスキャナをクレードルから外すと、バッテリの再調整モードが終了し、通常のバッテリ充 電モードに戻ります (**リニア イメージャー スキャナ バッテリの充電 (1-12 ページ)**を参照)。もう一度、バッテリの再 調整を再開するには、「バッテリの再調整」バーコードを再度スキャンし、スキャナをクレードルに装着します。
- 3. バッテリの再調整を完了するには、2回の充電(放電/充電/放電/充電)を繰り返す必要があります。表 1-4 を参照し てください。

バッテリの再調整時の LED の定義

表 1-4 バッテリの再調整時の LED の定義

バッテリの再調整モード	LED	コメント
放電	赤色の点滅	放電時間は約 2.5 時間
充電時	緑色の点滅	充電には、外部電源を使用した場合で、約3時間かかります。
再調整の完了	緑色 - 点灯 (常時オン)	リニア イメージャー スキャナは、クレードルから外される まで、トリクル充電モードに入ります。
注: スキャナが CR0078-S (標準) クレードルへ装着された場合、スキャナの LED は充電インジケータとして使用されます。		
スキャナが CR0078-P (プレゼンテーション) クレードルへ装着された場合、クレードルの LED は充電インジケータとし て使用されます。		

クレードルへのリニア イメージャー スキャナの装着

スキャナをクレードルに装着し、リニア イメージャー スキャナ ハンドルの底部にある金属製の接触部が、クレードル上 の接触部に触れるようにします。ハンドルを軽く押して確実に装着し、クレードルとスキャナの接触部を合わせます。ク レードル背面の卓上/壁面取付場所切り替えつまみが、水平取り付けまたは垂直取り付け用の正しい位置であることを確 認します。

注 クレードルの取り付けに関する説明は CR0078-S/CR0008-S クレードルのみに適用されます (CR0078-P クレードル には適用されません)。

CR0078-S/CR0008-S クレードルへのリニア イメージャー スキャナの装着

クレードルの水平取り付け

クレードルを水平に取り付ける場合は、固定具は必要ありません。

- 1. ゴム足がクレードルに装着されていることを確認します。これによりクレードルが安定し、設置面に傷が付くのを防 ぐことができます。
- 2. 卓上/垂直設置切り替えつまみが、図 1-10 に示すように正しい位置に設定されていることを確認します。

図 1-10 水平取り付け - リニア イメージャー スキャナをクレードルに装着する

クレードルの垂直設置

クレードルを垂直に取り付ける場合は、次の手順に従います。

- 1. ゴム足がクレードルに装着されていることを確認します。これによりクレードルが安定し、設置面に傷が付くのを防 ぐことができます。
- クレードル正面のマウント フック (変更可能)のフック部分が上向きになっていることを確認します。上向きになっていない場合は、フックを裏返しに取り付けます。このフックにより、リニア イメージャー スキャナを安定させることができます。変更可能なマウント フックの位置については、図 1-3 (1-4 ページ)を参照してください。

3. 卓上/垂直設置切り替えつまみが、図 1-11 に示すように正しい位置に設定されていることを確認します。

図 1-11 垂直設置 - リニア イメージャー スキャナをクレードルに装着する

CR0078-P クレードルへのリニア イメージャー スキャナの装着/取り外し

スキャナをプレゼンテーション クレードルに装着するには、次の手順を行います。

- 1. スキャナを前方に少し傾けて下部を CR0078-P クレードルに挿入します。
- 2. スキャナとクレードルの接触部を合わせて、カチッと音がするまでハンドルを後ろに押し下げます。

図 1-12 プレゼンテーション クレードルへのリニア イメージャー スキャナの装着

1 - 16 LI4278 プロダクト リファレンス ガイド

スキャナをプレゼンテーション クレードルから取り外すには、次の手順を行います。

1. スキャナを少し前方に押して、CR0078-P クレードルから取り外します。

図 1-13 プレゼンテーション クレードルからのリニア イメージャー スキャナの取り外し

垂直設置ブラケットのテンプレート

必要に応じて、垂直設置ブラケットを Zebra から購入できます。垂直設置ブラケットを取り付ける際には、取り付け穴または図 1-14のテンプレートを使用して、ネジ穴の位置を決定します。

 \checkmark

注 クレードルの設置は CR0078-S/CR0008-S クレードル については可能です (CR0078-P クレードルではでき ません)。クレードルの取り付けの詳細な手順は、 『CR0078-S/CR0008-S クレードル クイック リファレン ス ガイド (p/n 72-135874-xx)』を参照してください。

無線通信

リニア イメージャー スキャナは、Bluetooth Technology Profile Support 経由で、またはクレードルとペアリングすること によって、離れたデバイスと通信できます。無線通信パラメータ、操作モードの詳細情報、Bluetooth Technology Profile Support およびペアリングについては、第4章、無線通信を参照してください。

リニア イメージャー スキャナの設定

本書のバーコードまたは 123Scan2 設定プログラムを使用してリニア イメージャー スキャナを設定します。バーコード メニューを使用してリニア イメージャー スキャナをプログラミングする場合の詳細については、第5章、ユーザー設定 とその他のデジタル スキャナ オプションを参照してください。また、個々のホストタイプへの接続については、その ホストの章を確認してください。この設定プログラムを使用したリニア イメージャー スキャナの設定方法について は、第10章、123SCAN2 を参照してください。

アクセサリ

リニア イメージャー スキャナとクレードルのアクセサリーには、以下のものがあります。

- ホストケーブル経由で給電されない場合に利用可能な電源。設定の詳細については、各ホストインタフェースの章を 参照してください。
- クレードルを垂直に取り付けるための垂直設置ブラケット。垂直設置テンプレートと取り付け手順については、 『CR0078-S/CR0008-S クレードル クイック リファレンス ガイド (p/n 72-135874-xx)』を参照してください。
- リニア イメージャー スキャナを手首から下げるためのストラップ。

ストラップ

ストラップは、バッテリの蓋の内側に取り付けます。

図 1-15 装着されたストラップ

ストラップを装着するには、次の手順に従います。

- 1. リニア イメージャー スキャナ バッテリの交換 (1-11 ページ)の説明に従い、バッテリ カバー ラッチを開きます。バッ テリは外さないでください。
- 2. ストラップのループをバッテリ カバー ラッチ内部の、ループ ガイドの間のネジ容器にかけます。

図1-16 ストラップの装着

- 3. バッテリ カバー ラッチを閉じます。
- 4. ネジを締めます。

第2章 スキャン

はじめに

この章では、ビープ音と LED 定義、スキャンのテクニック、一般的なスキャンの説明とヒント、および読み取り範囲について説明します。

ビープ音および LED の定義

さまざまなビープ音シーケンス/パターン、および LED 表示を通してリニア イメージャー スキャナの状態を知ることが できます。表 2-1 は、通常のスキャン操作中やリニア イメージャー スキャナのプログラミング中に発生するビープ音シー ケンス/パターンと LED 表示の定義を示しています (LED インジケータの充電およびバッテリの再調整については、表 1-3 (1-12 ページ) および 表 1-4 (1-13 ページ) を参照してください)。

表 2-1 スキャナのビープ音および LED の定義

ビープ音	LED 表示	説明
通常の使用時		
低音→中音→ 高音	なし	電源が投入されました。
スキャン		
なし	緑色の点灯	プレゼンテーション モードがオンになっています。
なし	LED の点灯なし、緑色の LED が消灯	プレゼンテーション モードがオフになっています。
中音のビープ音 (または設定したビープ音)	緑色の点滅	バーコードが正常に読み取られました。(ビープ音のプログ ラミングについては、表 5-1、設定パラメータのデフォルト 値を参照してください。)
低音→低音→低音→超低音	赤色	パリティ エラー。

表 2-1 スキャナのビープ音および LED の定義 (続き)

ビープ音	LED 表示	説明
長い低音 4 回	赤色	 スキャンされたシンボルの転送エラーが検出されました。データは無視されます。これは、本装置が正しく設定されていない場合に発生します。オプション設定を確認してください。 クレードルとの通信時に、クレードルはデータの受信確認を返します。受信確認が返されないと、転送エラーを示すビープ音シーケンスが鳴ります。その場合でも、ホストがデータを受信していることがあります。ホストシステムが転送データを受信しているかどうかを確認します。ホストがデータを受信していなかった場合、バーコードを再度スキャン
4回の短い高音	なし	しまり。 バッテリ残量が少ないことを示す警告です。
5回の長い低音	赤色	変換または形式に関するエラーです。
長い低音→長い高音→ 長い低音→長い高音	赤色	メモリが不足して新しいバーコードを保存できません。
無線操作		
低音	なし	リニア イメージャー スキャナをクレードルに接続したとき に電源が検出されました。 注:この機能はデフォルトで有効になっていますが、無効にす ることができます (装着時のビープ音 (4-18 ページ) を参照)。
長い低音→長い高音→ 長い低音→長い高音	赤色	クレードルのバッチのストレージのメモリが足りず、新しい バーコードを保存できません。
高音→低音→高音→低音	なし	ペアリングのバーコードがスキャンされました。
低音→高音	なし	Bluetooth 接続が確立されました。
高音→低音	なし	Bluetooth の通信が切断されました。 注:SPP または HID を使用してリモート デバイスに接続さ れており、バーコードのスキャン直後に切断を示すビープ音 シーケンスが鳴った場合は、ホスト デバイスが転送データを 受信しているかどうか確認してください。接続が失われた後 に、最後にスキャンしたバーコードの転送が試行された可能 性があります。
長い低音→長い高音	赤色	ページがタイムアウトしました。リモート機器が通信エリア 外にあるか、電源が入っていません。(自動再接続機能(4-14 ページ)を参照)。
高音 5 回 (設定されている場合のみ)	緑色の点滅	 Bluetooth が再接続を試行中です。 再接続試行が進行している間、5 秒おきに鳴ります。 (自動再接続機能 (4-14 ページ) を参照)。

表 2-1 スキャナのビープ音および LED の定義 (続き)

ビープ音	LED 表示	説明
長い低音→長い高音→ 長い低音→長い高音	なし	接続試行がリモート デバイスにより拒否されました。 注:ペアリング方法 (4-22 ページ)の場合、クレードルがすで に別のリニア イメージャー スキャナにポイント・ツー・ポ イント ロック モードで接続されているか、ピコネットがマ ルチポイント・ツー・ポイント モードで一杯になっている 可能性があります。「装着によるペアリング」が有効で、装 着されたリニア イメージャー スキャナがすでにクレードル に接続されている場合には、ビープ音は鳴りません。
パラメータ プログラミング		
長い低音→長い高音	赤色	入力エラー、不適切なバーコードの選択、「 キャンセル 」の スキャン、間違った入力、不適切なバーコード プログラミン グ シーケンスなどで、またはプログラム モードのままです。
高音→低音	緑色	キーボード パラメータが選択されました。バーコード キー パッドで値を入力してください。
高音→低音→高音→低音	緑色	プログラムが正常に終了し、パラメータ設定の変更が反映されました。
ADF プログラミング		
低音→高音→低音	なし	ADF の転送エラーです。
高音→低音	緑色	数字である必要があります。別の数字を入力します。必要に 応じて始めにゼロを追加します。
低音→低音	緑色	英字バーコードを使って別の英字を入力するか、 「メッセー ジの終わり 」バーコードをスキャンします。
高音→高音	緑色の点滅	ADF 条件またはアクション バーコードを使って別の条件ま たはアクションを入力するか、「規則の保存」バーコードを スキャンします。
高音→低音→低音	緑色	現在の規則の条件またはアクションをすべてクリアし、規則 の入力を続行します。
高音→低音→高音→低音	緑色 (点滅の停止)	規則が保存されました。規則の入力モードが終了しました。
長い低音→長い高音	赤色	規則のエラー。入力エラー、間違ったバーコードがスキャン された、または条件やアクションのリストが規則に対して長 すぎます。条件またはアクションを再入力してください。
低音	緑色	最後に保存された規則が削除されました。現在の規則は以前 のままになっています。
低音→高音→高音	緑色	すべての規則が削除されました。
長い低音→長い高音→ 長い低音→長い高音	赤色	規則のメモリが不足しています。既存の規則の一部を消去 し、規則を再び保存してください。
長い低音→長い高音→ 長い低音	緑色 (点滅の停止)	規則の入力がキャンセルされました。エラーのため、また は、ユーザが規則の入力の終了を求めたため、規則の入力 モードが終了しました。

表 2-1 スキャナのビープ音および LED の定義 (続き)

ビープ音	LED 表示	説明
Code 39 バッファリング		
高音→低音	なし	新しい Code 39 データがバッファに入力されました。
長い高音3回	なし	Code 39 バッファに空き容量がなくなりました。
高音→低音→高音	なし	Code 39 バッファが消去またはクリアされました。
低音→高音→低音	なし	Code 39 バッファが消去されたか、空のバッファがクリアま たは転送されようとしました。
低音→高音	なし	バッファされたデータが正常に転送されました。
ホスト別		
USB のみ		
高音 4 回	なし	リニア イメージャー スキャナの初期化が完了していま せん。数秒待ってからスキャンし直してください。
RS-232 のみ		
高音→高音→高音→低音	赤色	RS-232 の受信エラーです。
高音	なし	<bel> キャラクタが有効で、<bel> キャラクタが受信され ました (ポイント・ツー・ポイントモードのみ)。</bel></bel>

クレードルの LED の定義

重要 スキャナが CR0078-S (標準) クレードルへ装着された場合、スキャナの LED は充電インジケータとして使用されます。

スキャナが CR0078-P (プレゼンテーション) クレードルへ装着された場合、クレードルの LED は充電インジケータ として使用されます。

CR0078-S/CR0008-S クレードルの LED は電源のみを示します。

表 2-2 CR0078-P クレードルの LED の定義

注

LED	説明
緑色の点滅	クレードルが外部給電されており、サスペンド状態の USB ホスト インタフェースに接続 されています。クレードルはリニア イメージャー スキャナに接続されていませんが、リ ニア イメージャー スキャナを充電できます。スキャナとクレードルをペアリングするに は、ペアリングバーコードをスキャンしてください (ペアリング (4-20 ページ) を参照)。
赤色で点滅	転送エラーです。
緑色	クレードルの電源が入っています。
赤色で点滅	転送エラーです。
緑色でゆっくり点滅	バッテリ温度に関して重大ではない問題が発生しました。
緑色でゆっくり点滅	USB を使用してクレードルで充電中 (バス電源)です。
緑色で速く点滅	スキャナが充電中です。
黄色の点滅	バッテリ温度に関して重大な問題が発生しました。
緑色の点灯	スキャナはフル充電されています。
赤色の点灯	バッテリの再充電が必要です。
赤色でゆっくり点滅	バッテリの再調整中です。

スキャン

リニア イメージャー スキャナのプログラミングの詳細は、該当するホストの章、第4章、無線通信、および第11章、 シンボル体系を参照してください(本ガイドでは、前述の各章に含まれているパラメータに加え、ユーザ設定およびその 他のリニア イメージャー スキャナのオプションのパラメータを記載しています)。

照準

リニア イメージャー スキャナは、スキャン時に赤色の照明を投影します。この赤色の照明によって、読み取り範囲内に バーコードを収めることができます。リニア イメージャー スキャナとバーコードの適切な距離については、読み取り範 囲 (2-8 ページ)を参照してください。

ハンドヘルドスキャン

スキャンするには、次の手順に従います。

- 1. すべてがしっかり接続されていることを確認します(該当するホストの章を参照)。
- 2. リニア イメージャー スキャナをバーコードに向けます。
- 3. トリガを引きます。

図2-1 スキャン

4. 読み取りが成功すると、リニア イメージャー スキャナはビープ音を鳴らし、LED が1回緑色に点滅します。ビープ 音と LED の定義の詳細については、表 2-1 と表 2-2 を参照してください。

ハンズフリー スキャン

リニア イメージャー スキャナは、CR0078-P クレードルに装着されていると、ハンズフリー (プレゼンテーション)モー ドになります。このモードではリニア イメージャー スキャナは、連続 (常時 ON)モードで動作し、読み取り範囲に示さ れたバーコードを自動的に読み取ります。スキャナの LED がオンになり、緑色に点灯します。

スキャンするには、次の手順に従います。

- 1. すべての接続が安全であることを確認します(該当するホストの章を参照)。
- 2. リニアイメージャースキャナの読み取り範囲にバーコードを提示します。

図 2-2 プレゼンテーション スキャン

3. 読み取りが成功すると、リニア イメージャー スキャナはビープ音を鳴らし、LED が緑色に一瞬消灯します。ビープ 音と LED の定義の詳細については、表 2-1 と表 2-2 を参照してください。

読み取り範囲

指定されていない限り、範囲は Code 39 で計算されます。

表 2-3 LI4278 読み取り範囲

いいお山肉庄	パーコードタイプ	通常の読み取り幅		
シンホル省度		近距離	遠距離	
4 mil	Code 39	4 インチ (10.2 cm)	10.0 インチ (25.4 cm)	
5 mil	Code 39	3.0 インチ (7.6 cm)	13.0 インチ (33.0 cm)	
7.5 mil	Code 39	1.5 インチ (3.8 cm)	19.0 インチ (48.3 cm)	
13 mil	100% UPC-A	1.0 インチ (2.5 cm)	31.0 インチ (78.7 cm)	
20 mil	Code 39	1.0 インチ (2.5 cm)	42.0 インチ (106.7 cm)	
26 mil	200% UPC-A	3.0 インチ (7.6 cm)	55.0 インチ (140.0 cm)	
100mil (用紙)			>20 フィート (> 6 m)	

高密度バーコードを読み取る場合、ユーザはスキャナから少し離れてバーコードを読み取るようにしてください。 通常、3 mil の Code39 バーコードは 5 インチ (12.8cm) から読み始めます。

第3章 メンテナンス、トラブルシュー ティング、技術的な仕様

はじめに

本章では、リニア イメージャー スキャナとクレードルの推奨するメンテナンスとトラブルシューティング、技術的な仕様、信号の意味 (ピン配列)について説明します。

メンテナンス

既知の有害成分

以下の化学薬品は、Zebra スキャナ/クレードルのプラスチックに損傷を及ぼすことがわかっているため、これらの薬品が デバイスに接触することがないようにしてください。

- ・ アセトン
- アンモニア溶液
- アルカリのアルコール溶液または水溶液
- 芳香族炭化水素および塩素化炭化水素
- ・ ベンゼン
- 漂白剤
- 石炭酸
- アミンまたはアンモニアの化合物
- ・ エタノールアミン
- ・ エーテル
- ・ ケトン
- TB-リゾフォルム
- ・ トルエン
- トリクロロエチレン

承認されている洗浄剤

次の洗浄剤は、Zebra のスキャナやクレードルのプラスチックの洗浄に適していると承認されています。

- 湿らせた布
- イソプロピル アルコール 70%

リニア イメージャー スキャナのクリーニング

注意 リニア イメージャー スキャナのバッテリの蓋や接続端子に直接洗浄剤をかけないようにしてください。接触部は、ア ルコールで湿らせた綿棒を使用して優しくクリーニングしてください。

外部ウィンドウは定期的なクリーニングが必要です。ウィンドウが汚れていると、スキャン精度に影響する場合がありま す。ウィンドウに研磨剤などが付着しないようにしてください。

スキャナをクリーニングするには、次の手順に従います。

- 1. 承認されている上記の洗浄剤の1つで柔らかい布を湿らせるか、事前に湿らせた布を使用します。
- 前面、背面、側面、上面、底面といったすべての表面を優しく拭きます。液体は決してスキャナに直接かけないでください。液体がスキャナ ウィンドウ、トリガ、ケーブル コネクタ、その他のデバイスの部分の周囲にたまらないように注意してください。
- トリガおよびトリガと本体の間のクリーニングを忘れないでください(狭い部分や手が届かない領域は綿棒を使用してください)。
- 4. 水などの液体を直接外部ウィンドウに吹きかけないでください。
- 5. レンズ用ティッシュペーパー、または眼鏡などの光学材料の清掃に適した他の素材でスキャナの外部ウィンドウを拭 きます。
- 擦り傷を防止するために、柔らかくて表面が粗くない布で掃除した後、直ちにスキャナ ウィンドウを乾かします。
- 7. デバイスは、自然乾燥させてから使用してください。
- 8. スキャナコネクタでは、次のように清掃します。
 - a. 綿棒の綿の部分をイソプロピル アルコールに浸します。
 - b. 綿棒の綿の部分で、スキャナのコネクタの端から端までを前後に3回以上こすります。コネクタに綿のかすが 残らないようにしてください。
 - c. アルコールに浸した綿棒で、コネクタ部付近の油分やほこりを拭き取ります。
 - d. 乾いた綿棒の綿の部分で、スキャナのコネクタの端から端までを前後に3回以上こすります。コネクタに綿の かすが残らないようにしてください。

リニア イメージャー スキャナのクレードルのクリーニング

注意 リニア イメージャー スキャナのクレードル接続端子に直接洗浄剤をかけないようにしてください。接触部は、ア ルコールで湿らせた綿棒を使用して優しくクリーニングしてください。

クレードルに液体をこぼしたり、吹きかけたりしないでください。クレードルのクリーニングの方法については**リニア イ** メージャー スキャナのクリーニングを参照してください。

クレードル コネクタをクリーニングするには:

- 1. クレードルから DC 電源ケーブルを取り外します。
- 2. 綿棒の綿の部分をイソプロピル アルコールに浸します。
- 3. 綿棒の綿の部分で、コネクタのピンに沿って拭きます。コネクタの片側から反対側に向けて、ゆっくり綿棒を往復さ せます。コネクタに綿のかすが残らないようにしてください。
- 4. コネクタのすべての側面を綿棒で拭きます。

5. 圧縮空気をコネクタ部にスプレーします。このとき、圧縮空気の管やノズルを表面から約 1cm 離してください。

注意 圧縮空気を使用するときは、必ず保護用メガネを着用してください。ノズルを自分や他の人に向けないでください。ノ ズルや管は顔から離れた位置で使用します。圧縮空気製品のラベルに記載された警告に目を通してください。

- a. 綿のかすが残っていないことを確認します。かすが残っていれば取り除きます。
- b. クレードルの他の部分に油分やほこりが見つかった場合は、糸くずのでない布とイソプロピル アルコールを使用して取り除きます。
- c. イソプロピル アルコールが蒸発するまで 10 ~ 30 分 (周辺の温度と湿度による) ほど待ってから、クレードルに 電源をつないでください。

注 気温が低く湿度が高い場合は、長い乾燥時間が必要となります。温度が高く、湿度が低い場合は、乾燥時間は短くなります。

バッテリに関する情報

充電式バッテリ パックは、業界における最も高い基準に適合するように設計・製造されています。ただし、バッテリの寿 命や保管期間には限界があり、条件によって異なります。バッテリ パックの実際の寿命は、温度や使用状況、バッテリの 古さ、激しい落下など、さまざまな要因によって異なります。

バッテリ セルの製造業者は、バッテリを1年以上保管すると、バッテリの総合的な品質に不可逆的な劣化が発生する可能 性があることを指摘しています。このような劣化を最小限に抑えるため、バッテリを半分ほど充電し、容量が減少しない ように機器から取り外して、5°C ~ 25°C (41°F ~ 77°F)の乾燥した涼しい場所(温度は低いほうが保存に適しています) で保存することを推奨しています。バッテリは少なくとも1年に1度半分の容量まで充電してください。液漏れを発見し た場合は、液が付着した部分への接触を避け、適切な方法で廃棄してください。

駆動時間が極端に短くなった場合は、新品のバッテリに交換してください。バッテリの充電は、気温が 0° ~ +40℃ (32° ~ 104°F) の環境で行ってください。

弊社製品のバッテリの標準保証期間は、バッテリを別途購入された場合でも、リニア イメージャー スキャナに同梱され ていた場合でも、30 日間です。バッテリの詳細については、次の Web サイトを参照してください。 http://www.zebra.com/support

トラブルシューティング

注 \checkmark

スキャナの資産追跡情報とパラメータ設定がすべて記載されたテキスト ファイルを作成して、スキャナの問題をデ バッグする方法については、**スキャナ パラメータのダンプ (5-24 ページ)**を参照してください。

表 3-1 に記載されている解決方法を実行してもバーコードをスキャンできない場合は、販売店、または Zebra Global Customer Support Center (Zebra グローバル カスタマ サポート センター) にお問い合わせください。連絡先について は、(xxi ページ)を参照してください。

表 3-1 トラブルシューティング

問題	考えられる原因	考えられる解決方法
バッテリ		
リニア イメージャー スキャナの充電 が頻繁に必要になる。	バッテリの再調整が必要な場合が ある。	バッテリの再調整サイクルを実行して、 バッテリを復元します。詳細については、 リニア イメージャー スキャナ バッテリ の再調整 (1-13 ページ) を参照してくだ さい。
リニア イメージャー スキャナをク レードルに装着すると、赤色の LED が 3 秒以上点灯する。	過剰な電力消費が原因でバッテリの 充電が必要となる場合がある。	赤色の LED が、スキャナの通常の充電が 開始されたことを示す緑色に変わるまで 待機します。バッテリはフル充電するこ とをお勧めします。
ビープ音の意味		
リニア イメージャー スキャナから低 音→高音→ 低音が鳴る。	ADF の転送エラー。	ADF のプログラミングについては 第 12 章、アドバンスド データ フォー マッティングを参照してください。
	無効な ADF 規則が検出される。	ADF のプログラミングについては 第 12 章、アドバンスド データ フォーマッ ティングを参照してください。
	Code 39 バッファが消去されたか、 空のバッファがクリアまたは転送さ れた。	Code 39 バッファリングの「 バッファ消 去 」バーコードのスキャン時や、空の Code 39 バッファの転送試行時であれば、正常 です。
リニア イメージャー スキャナでプロ グラミング中に低音→高音→低音→ 高	ADF パラメータの保存領域が足り ない。	規則をすべて消去してから、短い規則でプ ログラミングし直してください。

音のビープ音シーケンスが鳴る。		
リニア イメージャー スキャナから低 音→高音の長いビープ音が鳴る。	入力エラーか、不適切なバーコード または「 キャンセル 」バーコードが スキャンされた。	プログラムされたパラメータの範囲内の 正しい数字バーコードをスキャンします。
	ページがタイムアウトした。リモー ト機器がエリア外にあるか、電源が 入っていない。	リニア イメージャー スキャナをリモート デバイスの通信エリア内に戻し、再接続を 試み、リモート デバイスの設定を確認し てください。

問題	考えられる原因	考えられる解決方法
リニア イメージャー スキャナから長 い低音→長い高音→長い低音→長い高	ホスト パラメータの記憶領域が不 足している。	デフォルト設定パラメータ (5-4 ページ) を スキャンします。
音のヒーフ音か鳴る。	ADF 規則に使用するメモリが不足 している。	ADF 規則の数、または ADF 規則内のス テップ数を減らしてください。
	接続試行がリモート デバイスによ り拒否された。	リモート デバイスのリソースを解放して ください。
リニア イメージャー スキャナから高 音→高音→高音→低音が鳴る。	RS-232 の受信エラー。	ホスト リセット中であれば正常です。そ れ以外の場合は、リニア イメージャー ス キャナの RS-232C パリティがホスト設定 と一致するように設定してください。
リニア イメージャー スキャナから高 音→低音が鳴る。	リニア イメージャー スキャナが Code 39 のデータをバッファに格納 した。 あるいは キーボード パラメータを選択した。	正常です。 あるいは バーコード キーパッドで値を入力してく ださい。
	Bluetooth の通信が切断された。	リニア イメージャー スキャナをリモー ト デバイスの通信エリア内に戻してくだ さい。 マスタ (SPP) モードの場合、クレードル で「PAIR」バーコードをスキャンしてリ ニア イメージャー スキャナとクレードル のペアリングを再度実行し、クレードルの 電源を確認してください。 スレーブ (SPP/HID) モードの場合、リニ ア イメージャー スキャナとリモート デ バイスの接続をリモート デバイス側から 確立しなおしてください。
リニア イメージャー スキャナから長 い高音のビープ音が 3 回鳴る。	Code 39 バッファに空き容量がなく なった。	先頭スペースを入れず Code 39 バーコー ドをスキャンするか、Code 39 バッファ リング - スキャンおよび保存 (11-32 ペー ジ)の「Code 39 をバッファしない」をス キャンして、保存されている Code 39 データを転送します。
トリガを放すと高音が 4 回鳴る。	バッテリの残量不足。	リニア イメージャー スキャナをクレー ドルに装着してバッテリを充電してくだ さい。

3-6 LI4278 プロダクト リファレンス ガイド

問題	考えられる原因	考えられる解決方法
長い低音が 4 回鳴る。	スキャンされたシンボルの転送エ ラーが検出された。データは無視さ れます。	これは、本装置が正しく設定されていない 場合に発生します。オプション設定を確認 してください。
	リニア イメージャー スキャナが次 のいずれかの状態になっている。 - エリア外 - クレードルとペアリングがされて いない - リモート Bluetooth デバイスに接 続されていない	リニア イメージャー スキャナをリモー ト デバイスの通信エリア内に戻してく ださい。 あるいは クレードルの「 PAIR」 バーコードをスキ ャンします。
	クレードルによって転送データが受 信されなかったとの通知があった。	その場合でも、ホストがデータを受信していることがあります。転送データの受信が行われたことをホスト システムで確認します。ホストがデータを受信していなかった場合、バーコードを再度スキャンします。
長い低音が5回鳴る。	変換または形式に関するエラー。	ホストの ADF 規則を確認してください。
USB デバイス タイプのスキャン後に、 電源投入ビープ音が鳴る。	バスとの通信が確立されていない。	スキャナが最大の電源レベルで動作する ためには、バスとの通信がその前に確立さ れている必要があります。
電源投入ビープ音が複数回鳴る。	ホスト PC がコールド ブートを実行 した。	USB バスがリニア イメージャー スキャ ナの電源を複数回オン/オフを繰り返すこ とがあります。これは正常な動作で、通 常、ホスト PC を電源オフの状態から起動 するときに発生します。
バーコードの読み取り		
赤色の照明が点灯しているが、バー コードが読み取れない。	正しいバーコード タイプがプログ ラミングされていない。	そのタイプのバーコードを読み取るよう にリニア イメージャー スキャナをプログ ラミングしてください。第 11 章、シンボ ル体系を参照してください。
	バーコードを読み取れない。	同じバーコード タイプのテスト記号をス キャンして、バーコードが劣化していない か確認します。
	リニア イメージャー スキャナとバー コードの間の距離が適切でない。	リニア イメージャー スキャナをバーコー ドに近付けるか、または離してください。 読み取り範囲 (2-8 ページ) を参照してく ださい。
	スキャン範囲でコードのすべての バーとスペースが網羅されていない。	スキャン範囲が許容される照準パターン 内にくるようにコードを移動します。 図 2-1 (2-6 ページ)を参照してください。

問題	考えられる原因	考えられる解決方法
バーコードは読み取れるが、そのデー タがホストに転送されない。	正しいホスト タイプがプログラ ミングされていない。	適切なホスト タイプのプログラミング バーコードをスキャンします。ホスト タ イプに対応する章を参照してください。
	インタフェース ケーブルの接続が 緩んでいる。	すべてのケーブルがしっかり接続されて いることを確認します。
	クレードルが正しいホスト インタ フェースに対応するようにプログラ ムされていない。	リニア イメージャー スキャナのホスト パラメータまたは編集オプションを確認 してください。
	リニア イメージャー スキャナが、ホ ストに接続されているインタフェー スとペアリングされていない。	クレードルの「PAIR」バーコードをスキャ ンして、リニア イメージャー スキャナと クレードルをペアリングしてください。
	クレードルがホストへの接続を切 断た。	次に示す順番で操作を行ってください:電源を取り外します。ホストケーブルを取り外します。3 秒間待機します。ホストケーブルを接続しなおします。電源を再接続します。ペアリングをしなおします。
バーコードの読み取り後、長い低音が 5 回鳴る。	変換エラーまたは形式エラーが検出 された。 リニア イメージャー スキャナの変 換パラメータが正しく設定されてい ない。	リニア イメージャー スキャナの変換パラ メータを正しく設定してください。
	変換エラーまたは形式エラーが検出 された。 選択したホストに送信できないキャ ラクタで ADF 規則がセットアップ されている。	ADF 規則を変更するか、ADF 規則をサ ポートするホストに変更してください。
	変換エラーまたは形式エラーが検出 された。 ホストに送信できないキャラクタの あるバーコードがスキャンされた。	バーコードを変更するか、バーコードをサ ポートできるホストに変更します。

3-8 LI4278 プロダクト リファレンス ガイド

問題	考えられる原因	考えられる解決方法					
ホストの表示							
スキャンされたデータがホストに正し く表示されない。	リニア イメージャー スキャナが現 在のホストを使用するようにプログ ラミングされていない。	正しいホストが選択されていることを確 認してください。 適切なホスト タイプのプログラミング バーコードをスキャンします。					
		RS-232C の場合は、リニア イメージャー スキャナの通信パラメータをホストの設 定に一致させてください。					
		USB HID キーボード構成またはキーボー ド ウェッジ構成の場合は、正しいキー ボード タイプと言語がプログラミングさ れていること、および CAPS LOCK キー がオフになっていることを確認してくだ さい。					
		編集オプション (ADF、UPC-E から UPC-A への変換など)が正しくプログラ ムされていることを確認してください。					
		リニア イメージャー スキャナのホスト タ イプ パラメータまたは編集オプションを 確認してください。					
トリガ							
トリガを引いても何も実行されない。	リニア イメージャー スキャナに電 源が供給されていない。	システムの電源を確認してください。電源 が必要な機器構成の場合、電源に接続し直 してください。 バッテリを確認してください。バッテリ収 納部のエンド キャップがきちんとはまっ ているかを確認してください。					
	インタフェース ケーブルまたは電 源ケーブルの接続が緩んでいる。	緩んだケーブル接続を確認し、ケーブルを 接続し直してください。					
	リニア イメージャーが無効になっ ている。	Synapse または IBM-468x モードの場合、 ホスト インタフェースからリニア イメー ジャー スキャナを有効にしてください。					
トリガを引いても赤色の照明が点灯し ない。	リニア イメージャー スキャナに電 源が供給されていない。	バッテリと充電接続部を確認してくださ い。バッテリ収納部のエンドキャップが きちんとはまっているかを確認してくだ さい。さらに、クレードルへの電源および ケーブルのすべての接続がしっかり接続 されていることを確認してください。					
	インタフェース ケーブルまたは電 源ケーブルの接続が緩んでいる。	バッテリと充電接続部を確認してください。クレードルへの電源およびケーブルの すべての接続がしっかり接続されている ことを確認してください。					

技術仕様

表 3-2 技術仕様 - LI4278 リニア イメージャー スキャナ

項目	説明
外観・機能など	
寸法	3.84 インチ (高さ) x 2.75 インチ (幅) x 7.34 インチ (奥行き) 9.8cm (高さ) x 7cm (幅) x 18.6cm (奥行き)
重量 (バッテリ装備時)	約 7.9oz (224g)
カラー	キャッシュ レジスタ ホワイトまたはトワイライト ブラック
クレードル インタフェース	RS-232C、RS-485 (IBM)、USB、キーボード インタフェース (表 3-3 も参照)
バッテリ	交換可能な「エコ対応」充電式バッテリ
性能	
照準/照明	LED Class 1 デバイス 617nm (黄色)
スキャン速度	547 スキャン/秒
スキャン パターン	高輝度照準ライン1本
スキャン角度	水平、35°
1 回の充電で可能なスキャン数	最大 57,000 回
動作時間 (フル充電後)	72 時間
バッテリ仕様	750mAH NiMH フル充電でのスキャン回数:最大 57,000回(1スキャン/秒) クレードルから取り外した状態での動作時間(フル充電後):72時間(1スキャン/ 6秒) 充電時間: 完全に放電したバッテリをフル充電するには、外部電源を使用する場合で通常 3時間、充電に対応したホストを使用する場合で通常5時間かかります。
	± 45°
ピッチ	± 65°
スキュー	± 65°
公称読み取り深度	(読み取り範囲 (2-8 ページ) を参照)
読み取り可能コード	UPC/EAN:UPC-A、UPC-E、UPC-E1、EAN-8/JAN 8、EAN-13/JAN 13、Bookland EAN, Bookland ISBN Format, UCC Coupon Extended Code, ISSN EAN Code 128 (GS1-128 など)、ISBT 128、ISBT の連結、Code 39 (Trioptic Code 39 など)、Code 39 から Code 32 (Italian Pharmacy Code) への変換、Code 39 Full ASCII Conversion Code 93、Code 11、Matrix 2 of 5、Interleaved 2 of 5 (ITF)、Discrete 2 of 5 (DTF)、Codabar (NW - 7)、MSI、Chinese 2 of 5、IATA、Inverse 1 D (すべて の GS1 DataBar を除く)、GS1 DataBar (GS1 DataBar-14 など)、GS1 DataBar Limited、GS1 DataBar Expanded
耐移動性	25 インチ (63.5cm)/秒
最小印刷コントラスト	MrD 15%
動作環境	·
動作温度	32 ~ 122°F (0 ~ 50°C)

表 3-2 技術仕様 - LI4278 リニア イメージャー スキャナ (続き)

項目	説明
保管温度	-40° ~ 158° F (-40° ~ 70° C)
充電温度	公称值 32°~ 104° F (0°~ 40° C)、理想值 41°~ 95° F (5°~ 35° C)
湿度	相対湿度 5 ~ 85% (結露なし)
耐落下衝擊性能	室温の環境下、1.5m (5 フィート) の高さから 100 回以上落としても動作可能。 コンクリートに 1.8m (6 フィート) の高さから落としても動作可能
クレードルの挿入回数	250,000 回以上
耐周辺光	白熱灯 - 557 フット キャンドル (6,000 Lux) 直射日光 - 10,000 フット キャンドル (108,000 Lux) 蛍光灯 - 557 フット キャンドル (6,000 Lux) 水銀灯 - 557 フット キャンドル (6,000 Lux) ナトリウム灯 - 557 フット キャンドル (6,000 Lux) 通常の室内照明および屋外自然光 (直射日光)に対応
環境シーリング	ガスケットでシーリングした筐体により、防塵対応がされ、噴霧による清掃も可能
無線接続	
無線範囲	視野方向に直線距離で 100m (330 フィート)
無線機	Bluetooth v2.1 Class 2
データ速度	3.0 Mbps (2.1 Mbps) Bluetooth v2.1
ユーティリティ	123Scan ² 、リモート スキャナ管理 (RSM)、スキャナ管理サービス (SMS)、Zebra Scanner SDK
アクセサリ	
ストラップ	ストラップ (オプション) はバッテリ収納部の蓋に取り付け可能

表 3-3 技術的な仕様 - CR0078-S/CR0008-S クレードル

項目	説明		
外観・機能など			
寸法:	2.0 インチ (高さ) x 8.35 インチ (奥行き) x 3.4 インチ (幅) (5cm (高さ) x 21.1cm (奥行き) × 8.6cm (幅))		
重量	約 6.4oz. (181g)		
電圧および電流	 充電クレードル: 電圧 電流 5±10% VDC 575mA(外部電源) 5±10% VDC 395mA(ホストよりケーブル経由で給電) クレードルのみ:5V @ 70mA 		
カラー	キャッシュ レジスタ ホワイトまたはトワイライト ブラック		
電源の要件	4.75 ~ 14.0 VDC		

表 3-3 技術的な仕様 - CR0078-S/CR0008-S クレードル (続き)

項目	説明
性能	
サポートしているインタ フェース (CR0078-S のみ)	次の複数のインタフェースをオンボードに搭載:RS-232C (標準、Nixdorf、ICL、Fujitsu)、キー ボード インタフェース、USB (標準、IBM SurePOS、Macintosh)、SSI、123Scan ² 、リモート スキャナ管理 また Synapse により、上記を加えた多数の非標準インタフェースへの接続に対応しています。
動作環境	
動作温度	32° ~ 122° F (0° ~ 50° C)
保管温度	-40° ~ 158° F (-40° ~ 70° C)
充電温度	公称值 32°~ 104° F (0°~ 40° C)、理想值 41°~ 95° F (5°~ 35° C)
湿度	5 ~ 95% (結露なきこと)
アクセサリ	
設置オプション	卓上、壁面、コンピュータ ワークステーション、または医療用カート
電源	ホスト ケーブルを通じて電力を供給しない機器用の電源もあります

表 3-4 技術仕様 - CR0078-P クレードル

項目	説明
外観・機能など	
寸法:	5.4 インチ (奥行き) x 4 インチ (幅) x 3.6 インチ (高さ)
重量	約 7.9oz. (224g)
電圧および電流	充電クレードル:電圧電流12 ± VDC60mA (スキャナなし)12 ± VDC160mA (スキャナのアイドル時)12 ± VDC335mA (スキャナ充電時)
カラー	トワイライト ブラック
電源の要件	12 ± 10% VDC
性能	
サポートしているインタ フェース (CR0078-P のみ)	以下の複数のインタフェースをオンボードに搭載 :RS-232C (標準、Nixdorf、ICL、Fujitsu)、BM 468x/469x、キーボード インタフェース、USB (標準、IBM SurePOS、Macintosh)、SNAPI、 123Scan ² 、リモート スキャナ管理
動作環境	•
動作温度	32° ~ 122° F (0° ~ 50° C)
保管温度	-40° ~ 158° F (-40° ~ 70° C)

3 - 12 LI4278 プロダクト リファレンス ガイド

表 3-4 技術仕様 - CR0078-P クレードル (続き)

項目	説明
充電温度	公称值 32°~ 104° F (0°~ 40° C)、理想值 41°~ 95° F (5°~ 35° C)
湿度	5~95%(結露なし)
アクセサリ	
電源	電源が必要

クレードル信号の意味

表 3-5 の信号の解説は、リニア イメージャー スキャナのコネクタに適用されるものです。参考までにご覧ください。

ピン	IBM	シナプス	RS-232	キーボードイン タフェース	USB
1	予約済	シナプス クロック	予約済	予約済	ピン6にジャンプ
2	出力	出力	出力	出力	出力
3	接地	接地	接地	接地	接地
4	IBM_A(+)	予約済	TxD	キークロック	予約済
5	予約済	予約済	RxD	端末データ	D +
6	IBM_B(-)	シナプス データ	RTS	キー データ	ピン1にジャンプ
7	予約済	予約済	CTS	端末クロック	D -
8	予約済	予約済	予約済	予約済	予約済
9	N/A	N/A	N/A	N/A	N/A
10	N/A	N/A	N/A	N/A	N/A

表 3-5 クレードル信号のピン配列

図 3-1 は、クレードルのピンの位置を示しています。

図 3-1 クレードルのピン配列

表 3-6 の信号の定義は、リニア イメージャー スキャナからクレードルへのコネクタに適用されるものです。参考までに ご覧ください。

表	3-6	ク	レー	ドル	Ø	Ľ	ン	配置
---	-----	---	----	----	---	---	---	----

ピン	説明
1	CRADLE_TXD
2	VCC
3	GND
4	CRADLE_RXD

第4章 無線通信

はじめに

本章では、リニア イメージャー スキャナ、クレードル、およびホスト間で無線通信を行うための操作モードと機能について説明します。また、リニア イメージャー スキャナを設定するうえで必要なパラメータについても説明します。

リニア イメージャー スキャナは、無線通信パラメータのデフォルト一覧 (4-2 ページ)に示す設定で出荷されています。す べてのホストデバイスやその他のデフォルト値については、付録 A、標準のデフォルト設定パラメータを参照してくださ い。デフォルト値が要件に適合している場合、プログラミングは必要ありません。

機能の値を設定するには、1 つのバーコードまたは短いバーコード シーケンスをスキャンします。これらの設定は不揮発 性メモリに保存され、リニア イメージャー スキャナの電源を落としても保持されます。

クレードルにシナプスまたは USB ケーブルを使用していない場合、電源投入ビープ音の後にホスト タイプを選択します (個々のホストの情報については、各ホストについての章を参照してください)。この操作は、新しいホストに接続して初 めて電源を入れるときにのみ必要です。

すべての機能をデフォルト値に戻すには、**デフォルト設定パラメータ (5-4 ページ)**に示すバーコードをスキャンします。 プログラミング バーコード メニュー全体で、デフォルト値をアスタリスク (*) で示しています。

* はデフォルトを示す //** 接触によるペアリングを有効化 機能 / オプション

スキャン シーケンスの例

多くの場合、1つのバーコードをスキャンして特定のパラメータ値を設定します。

スキャン中のエラー

特に指定されていない限り、スキャン シーケンス中のエラーは、正しいパラメータを再スキャンすることで修正できます。

無線通信パラメータのデフォルト一覧

<mark>表 4-1</mark> に無線通信パラメータのデフォルトを示します。オプションを変更する場合は、(**4-3 ページ)** 以降の「無線通信パ ラメータ」セクションに掲載されている適切なバーコードをスキャンします。

注 すべてのユーザー設定、ホスト、シンボル体系、およびその他のデフォルト設定パラメータについては、付録A、標準のデフォルト設定パラメータを参照してください。

本ガイドでは、リストされているパラメータ番号は、これらのパラメータの属性番号と同じです。

表 4-1 無線通信パラメータのデフォルト一覧

パラメータ	パラメータ番号	デフォルト	ページ番号
無線通信ホスト タイプ		クレードル ホスト	4-4
BT フレンドリー名	607	n/a	4-6
検出可能モード	610	General	4-6
Apple iOS 対応 HID 機能	1114	無効	4-7
キーボード タイプ (カントリー コード)		英語 (U.S.)	4-8
HID キーボードのキャラクタ間ディレイ		ディレイなし (0 ミリ秒)	4-10
Caps Lock オーバーライド		無効	4-10
不明な文字の無視		有効	4-11
キーパッドのエミュレート		無効	4-11
キーボードの FN1 置換		無効	4-12
ファンクション キーのマッピング		無効	4-12
Caps Lock のシミュレート		無効	4-13
大文字/小文字の変換		変換なし	4-13
再接続試行時のビープ音	559	無効	4-15
再接続試行間隔	558	30 秒	4-16
Bluetooth キーボード エミュレーション (HID ス レーブ) モードでの自動再接続	604	バーコード データで	4-17
装着時のビープ音	288	有効	4-18
動作モード (ポイント・ツー・ポイント/マルチポイント・ツー・ ポイント)	538	ポイント・ツー・ポイント	4-19
パラメータ ブロードキャスト (クレードル ホスト のみ)	148	有効	4-20
ペアリング モード	542	非ロック	4-21
装着によるペアリング	545	有効	4-22
コネクション維持時間	5002	15 分	4-24
バッチ モード	544	通常 (データをバッチし ない)	4-27

表 4-1 無線通信パラメータのデフォルト一覧(続き)

パラメータ	パラメータ番号	デフォルト	ページ番号
ページ ボタン	746	無効	4-28
認証	549	無効	4-29
PIN コード (設定と保存)	552	12345	4-30
可変 PIN コード	608	静的 (デフォルト PIN コードは 12345)	4-30
暗号化	550	無効	4-31
Secure Simple Pairing の IO 機能 (SPP サーバーおよび SPP マスタ ホスト モードのみ)	911	入力なし/出力なし	4-32

ワイヤレスのビープ音の定義

リニア イメージャー スキャナはペアリングバーコードをスキャンすると、操作の成功または不成功を示すさまざまなビー プ音シーケンスを鳴らします。ペアリング操作の際に鳴るものを含むすべてのビープ音シーケンスおよび LED 表示につい ては、ビープ音および LED の定義 (2-1 ページ) を参照してください。

無線通信ホスト タイプ

リニア イメージャー スキャナをクレードルと通信できるように設定する、または標準 Bluetooth プロファイルを使用する には、以下のホスト タイプ バーコードの中から適切なものをスキャンします。

- クレードルホスト(デフォルト)-リニアイメージャースキャナをクレードルと組み合わせて運用するには、このホストタイプを選択します。リニアイメージャースキャナは、クレードルとペアリングをする必要があります。クレードルは、ホストインタフェースケーブルの接続を通じてホストと直接通信します。
- シリアルポートプロファイル(マスタ)-Bluetooth Technology Profile Support のホストタイプを選択します((4-5 ページ)を参照)。リニアイメージャースキャナは、Bluetoothを介して PC/ホストに接続し、シリアル接続のように動作します。リニアイメージャースキャナは、リモートデバイスとの接続を初期化し、マスタとなります。「シリアルポートプロファイル(マスタ)」をスキャンし、次に、リモートデバイスの「PAIR」バーコードをスキャンします。リモートデバイスのペアリングバーコードを作成する方法については、ペアリングバーコードのフォーマット(4-23 ページ)を参照してください。
- シリアル ポート プロファイル (スレーブ) Bluetooth Technology Profile Support のホスト タイプを選択します ((4-5 ページ)を参照)。リニア イメージャー スキャナは、Bluetooth を介して PC/ホストに接続し、シリアル接続 のように動作します。リニア イメージャー スキャナは、リモート デバイスからの接続要求を受け入れ、スレーブ となります。「シリアル ポート プロファイル (スレーブ)」をスキャンし、接続要求を待ちます。
- Bluetooth キーボード エミュレーション (HID スレーブ) Bluetooth Technology Profile Support に対しては、このホ スト タイプを選択します。Bluetooth Technology Profile Support とマスタ/スレーブの各定義については、(4-5 ページ) を参照してください。リニア イメージャー スキャナは、Bluetooth を介してて PC/ホストに接続し、キーボー ドのように動作します。リニア イメージャー スキャナは、リモート デバイスからの接続要求を受け入れ、スレー ブとなります。「Bluetooth キーボード エミュレーション (HID スレーブ)」をスキャンし、接続要求を待ちます。

無線通信ホストタイプ(続き)

シリアル ポート プロファイル (マスタ)

シリアル ポート プロファイル (スレーブ)

Bluetooth キーボード エミュレーション (HID Slave)

Bluetooth Technology Profile Support

Bluetooth Technology Profile Support では、無線通信にクレードルは必要ありません。リニア イメージャー スキャナは、 Bluetooth テクノロジーを使用してホストと直接通信します。リニア イメージャー スキャナは、標準 Bluetooth シリアル ポート プロファイル (SPP) と HID プロファイルをサポートしていて、これらのプロファイルをサポートする他の Bluetooth デバイスと通信することができます。

- SPP リニアイメージャースキャナは、Bluetoothを介してPC/ホストに接続し、シリアル接続のように動作します。
- HID リニア イメージャー スキャナは、Bluetooth を介して PC/ホストに接続し、キーボードのように動作します。

マスタ/スレーブのセットアップ

リニア イメージャー スキャナは、マスタまたはスレーブとしてセットアップできます。

リニア イメージャー スキャナをスレーブとしてセットアップした場合は、他のデバイスから検出、接続することができ ます。マスタとしてセットアップした場合は、接続が要求されているリモートデバイスの Bluetooth アドレスが必要です。 この場合、リモート デバイスのアドレスに対応するペアリングバーコードを作成し、スキャンして、リモート デバイス との間で接続を試みる必要があります。ペアリングバーコードを作成する方法については、ペアリングバーコードのフォー マット (4-23 ページ)を参照してください。

マスタ

リニア イメージャー スキャナをマスタ (SPP) としてセットアップした場合は、スレーブ デバイスとの間で無線接続を開 始できるようになります。接続の開始は、リモート デバイスのペアリングバーコードをスキャンして行います (ペアリン グバーコードのフォーマット (4-23 ページ) を参照)。

スレーブ

リニア イメージャー スキャナをスレーブ デバイス (SPP) としてセットアップした場合は、リモート デバイスからの接続 要求を受け付けます。

注 ペアリングできるリニア イメージャー スキャナの数は、ホストの能力によって異なります。

Bluetooth フレンドリー名

パラメータ番号 607

デバイスを検出したときにアプリケーションに表示されるリニア イメージャー スキャナの名称を設定することができま す。デフォルト名は、リニア イメージャー スキャナの名称にシリアル番号を加えた文字列 (例 : LI4278 123456789ABCDEF)です。「デフォルト設定」をスキャンすると、このスキャナ名に戻ります。デフォルト設定をした後 もユーザ設定名を保持する場合は、カスタム デフォルトを使用してください。

新しい Bluetooth フレンドリー名を設定するには、次のバーコードをスキャンして、付録 E、英数字バーコードから 23 文 字までのバーコードをスキャンします。名前が 23 文字未満の場合は、名前を入力した後に**メッセージの終わり (E-7 ペー** ジ)のバーコードをスキャンします。

/ 注 アプリケーションでデバイス名を設定できる場合、そのデバイス名が Bluetooth フレンドリー名より優先されます。

Bluetooth フレンドリー名

検出可能モード

パラメータ番号 610

検出を開始するデバイスに基づいて、検出可能モードを選択します。

- PC から接続を開始するときは、「General Discoverable Mode」を選択します。
- モバイル デバイス (Q など) から接続を開始し、そのデバイスが General Discoverable Mode で表示されないとき は、「Limited Discoverable Mode」を選択します。このモードでは、デバイスの検出に時間がかかる可能性がある ので注意してください。

デバイスは 30 秒間 Limited Discoverable Mode のままになります。この間、緑の LED が点滅します。その後、検 出不能となります。Limited Discoverable Mode を再度有効にするには、トリガーを引きます。

* General Discoverable Mode (0)

Limited Discoverable Mode (1)
HID ホスト パラメータ

リニア イメージスキャナは Apple iOS の仮想キーボード エミュレーションと、Bluetooth HID プロファイルを通じたキー ボード エミュレーションをサポートします。このモードでは、リニア イメージャー スキャナは、HID プロファイルを Bluetooth キーボードとしてサポートする Bluetooth ホストと情報をやり取りできます。スキャンしたデータはキースト ロークとしてホストに転送されます。

Apple iOS 対応 HID 機能

パラメータ番号 1114

これは Apple iOS デバイス用のオプションで、トリガを2度押しすることで iOS 仮想キーボードを開閉できるようにします。

注 この機能が有効である場合、リニア イメージャー スキャナを Apple iOS 以外のデバイスで使用することはできません。

*無効 (0)

(1)

4 - 8 LI4278 プロダクト リファレンス ガイド

HID キーボード タイプ (カントリー コード)

以下に HID ホストでサポートされるキーボード パラメータを示します。 キーボード タイプに対応するバーコードをスキャンします。

* 英語 (U.S.) 標準キーボード

フランス語版 Windows

カナダ フランス語版 Windows 98

国際フランス語版

ドイツ語版 Windows

スペイン語版 Windows

イタリア語版 Windows

HID キーボード タイプ(続き)

スウェーデン語版 Windows

イギリス英語版 Windows

日本語版 Windows

カナダ フランス語版 Windows 2000/XP

ポルトガル/ ブラジル語版 Windows

HID キーボードのキャラクタ間ディレイ

このパラメータは、エミュレーションされたキーストローク間でのディレイをミリ秒単位で設定します。HID ホストがデー タの転送に時間がかかる場合、以下のバーコードをスキャンしてディレイを長くします。

*ディレイなし (0 ミリ秒)

中程度のディレイ (20 ミリ秒)

長いディレイ (40 ミリ秒)

HID CAPS Lock キーのオーバーライド

有効になっている場合、Caps Lock キーの状態に関係なく、データの大文字と小文字が保持されます。「日本語版 Windows (ASCII)」キーボード タイプの場合、この設定は常に有効で、無効にすることはできません。

*CAPS Lock キーをオーバーライドしない (無効)

Caps Lock キーのオーバーライド (有効)

HID 不明な文字の無視

このオプションは、HID キーボード エミュレーション デバイスおよび IBM デバイス専用です。不明な文字とは、ホスト が認識できない文字です。「不明な文字を含むバーコードを送信する」を選択している場合、不明な文字を除くすべての バーコード データが送信され、エラーを示すビープ音は鳴りません。「不明な文字を含むバーコードを送信しない」を選 択した場合、バーコード データは最初の不明な文字まで送信され、その後エラーを示すビープ音が鳴ります。

* 不明な文字を含むバーコードを送信する (有効)

不明な文字を含むバーコードを送信しない (無効)

キーパッドのエミュレート

有効になっている場合、すべての文字は ASCII シーケンスとして数字キーパッド経由で送信されます。たとえば、ASCII キャラクタの A は「ALTメーク」、0、6、5、「ALT ブレーク」として送信されます。

* キーパッド エミュレーションを無効にする

キーパッド エミュレーションを有効にする

HID キーボードの FN1 置換

有効になっている場合、このパラメータにより EAN128 バーコードの FN1 文字が、ユーザーの選択したキー カテゴリおよび値に置き換わります。キー カテゴリおよびキー値の設定については、FN1 置換値 (5-21 ページ) を参照してください。

*キーボード FN1 置換を無効にする

キーボード FN1 置換を有効にする

HID ファンクション キーのマッピング

32 未満の ASCII 値は、通常コントロール キー シーケンスとして送信されます。このパラメータが許可されている場合は、 標準的なキーマッピングの代わりに太字のキーが送信されます (表 7-4 (7-19 ページ)参照)。

このパラメータが有効になっているかどうかに関係なく、太字エントリを持たないテーブル エントリは同じままです。

* ファンクション キーのマッピングを無効にする

ファンクション キーのマッピングを有効にする

Caps Lock のシミュレート

キーボード上の Caps Lock キーを押したときと同様にバーコード上の文字を大文字または小文字に変換するには、「有効」を 選択します。キーボードの Caps Lock の現在の状態に関係なく、この変換は行われます。

*Caps Lock のシミュレートを無効にする

Caps Lock のシミュレートを有効にする

大文字/小文字の変換

すべてのバーコード データを大文字または小文字に変換します。

* 変換なし

すべてを大文字に変換する

すべてを小文字に変換する

自動再接続機能

SPP マスタ モードまたはクレードル ホスト モードでは、無線通信が途切れて切断された場合、リニア イメージャー ス キャナは自動的にリモート デバイスに再接続を試みます。これは、リニア イメージャー スキャナがリモート デバイスの 通信エリア外に出た場合、またはリモート デバイスの電源が切れた場合に発生することがあります。 リニア イメージャー スキャナは、再接続試行間隔の設定によって指定された期間、再接続を試みます。この間、緑の LED が点滅し続けます。

ページ タイムアウトで自動再接続が失敗した場合、リニア イメージャー スキャナはページ タイムアウトのビープ音 (長 い低音→長い高音)を鳴らし、ロー パワー モードに移行します。 リニア イメージャー スキャナのトリガを引くと、自動 再接続を再開できます。

リモート デバイスが接続を拒否したために自動再接続が失敗した場合、リニア イメージャー スキャナは接続拒否を示す ビープ音シーケンスを鳴らし (ワイヤレスのビープ音の定義 (4-3 ページ)参照)、リモート ペアリングのアドレスを削除し ます。この状況が発生した場合、ペアリングバーコードをスキャンして、リモート デバイスへの新しい接続を再試行する 必要があります。

注 自動再接続シーケンスの進行中にバーコードをスキャンすると、転送エラーを示すビープ音シーケンスが鳴り、デー タはホストに転送されません。接続が再確立された後、通常のスキャン操作に戻ります。ビープ 音シーケンスの定義 については、ビープ音および LED の定義 (2-1 ページ)を参照してください。

リニア イメージャー スキャナのメモリには、各マスタ モード (SPP、クレードル) のリモート Bluetooth アドレスを保存 できます。これらのモードを切り替えると、リニア イメージャー スキャナは、自動的に、そのモードで最後に接続され ていたデバイスに対して再接続を試みます。

ホスト タイプ バーコード (4-3 ページ) をスキャンして Bluetooth ホスト タイプを切り替えると、無線はリセットされ 注 ます。この間、スキャンは無効になります。スキャンができるようになったとき、リニア イメージャー スキャナが無 線を再初期化するには数秒かかります。

再接続試行のビープ音のフィードバック

パラメータ番号 559

リニア イメージャー スキャナが通信エリア外に出て、接続が切断されると直ちに再接続が試行されます。リニア イメー ジャー スキャナが再接続を試みている間、緑色の LED が点滅し続けます。無線の再接続が失敗すると、リニア イメー ジャー スキャナはページ タイムアウトのビープ音 (長い低音→長い高音)を鳴らし、LED の点滅を止めます。トリガーを 引くとプロセスを再度開始できます。

デフォルトでは、「再接続試行時のビープ音」機能は無効になっています。有効にすると、リニア イメージャー スキャナ は再接続試行中、5 秒ごとに 5 回の短い高音を鳴らします。再接続試行時のビープ音を有効または無効にするには、以下 のバーコードをスキャンします。

* 再接続試行時のビープ音を無効にする (0)

再接続試行時のビープ音を有効にする (1)

再接続試行間隔

パラメータ番号 558

リニア イメージャー スキャナが通信エリア外に出て、接続が切断されると直ちに 30 秒 (デフォルト)の間、再接続が試 行されます。この時間は、次のいずれかに変更することができます。

再接続試行間隔を設定するには、以下のバーコードのいずれかをスキャンします。

*30 秒間再接続を試行 (6)

1 分間再接続を試行 (12)

5 分間再接続を試行 (60)

30 分間再接続を試行 (360)

1 時間再接続を試行 (720)

無制限に再接続を試行 (0) Bluetooth キーボード エミュレーション (HID スレーブ) モードでの自動再接続

パラメータ番号 604

Bluetooth キーボード エミュレーション (HID スレーブ) モードで、リニア イメージャー スキャナとリモート デバイスの 接続が切断された場合は、次の再接続オプションを選択します。

- バーコードで自動再接続:バーコードをスキャンすると自動的に再接続します。このオプションでは、最初のキャラ クタを転送するときに、遅延が発生する可能性があります。スキャンを開始すると、読み取り中のビープ音が鳴り、 その後、接続、ページタイムアウト、接続拒否をを示すビープ音、または送信エラーを示すビープ音が続きます。 このオプションは、リニアイメージャー スキャナやモバイル機器のバッテリ寿命を延ばしたい場合に選択します。 なお、接続拒否コマンドやケーブルの取り外しコマンドの実行時には、自動接続は行われません。
- 直ちに自動再接続:接続が切断された場合、リニアイメージャースキャナが再接続を試みます。ページタイムアウトが発生した場合は、リニアイメージャースキャナのトリガを引いて自動再接続を再開します。このオプションは、リニアイメージャースキャナのバッテリ寿命を考慮する必要がなく、スキャンしたバーコードを送信するためのディレイを回避する場合に選択します。なお、接続拒否コマンドやケーブルの取り外しコマンドの実行時には、自動接続は行われません。
- 自動再接続しない: リニア イメージャー スキャナーとリモートデバイスの接続が切断された場合、手動で再接続する必要があります。

*バーコードで自動再接続 (1)

直ちに自動再接続 (2)

自動再接続しない (0)

通信エリア外インジケータ

通信エリア外インジケータは、再接続試行時のビープ音を有効にする (1) (4-15 ページ) をスキャンし、再接続試行間隔 (4-16 ページ) を使って時間を延長することで設定できます。

たとえば、リニア イメージャー スキャナが通信エリア外にあって、無線接続が切断されているときに、再接続試行時の ビープ音が無効にされているとします。この場合、リニア イメージャー スキャナは、再接続試行間隔のスキャンによっ て設定された間隔で、無音のまま再接続を試行します。

そこで再接続試行時のビープ音を有効にすると、リニア イメージャー スキャナは再接続試行中、5 秒ごとに 5 回の短い高 音を鳴らします。たとえば、再接続試行間隔を、30 分など、長いものに変更した場合、リニア イメージャー スキャナは 30 分間 5 秒ごとに 5 回の高音を鳴らして、通信エリア外であることを知らせ続けます。

装着時のビープ音

パラメータ番号288

リニア イメージャー スキャナがクレードルに装着され、電源を検出すると、短い低音を発しますこの機能はデフォルト で有効になっています。

装着時のビープ音を有効または無効にするには、以下の該当するバーコードをスキャンします。

(00h)

装着時のビープ音を無効にする (01h)

リニア イメージャー スキャナからクレードルへのサポート

動作モード

パラメータ番号 538

無線通信機能を持つ充電クレードルは 2 つの無線通信動作モードをサポートしていて、リニア イメージャー スキャナが ワイヤレスで通信できるようになります。

- ポイント・ツー・ポイント
- マルチポイント・ツー・ポイント

注 ポイント・ツー・ポイント通信およびマルチポイント・ツー・ポイント通信の定義については、用語集を参照してください。

ポイント・ツー・ポイント通信

ポイント・ツー・ポイント通信モードでは、クレードルに同時に接続できるリニア イメージャー スキャナは 1 台だけで す。このモードでは、リニア イメージャー スキャナをクレードルに装着するか (装着によるペアリングが有効になってい る場合は (4-22 ページ))、ペアリングバーコードをスキャンすることによって、リニア イメージャー スキャナとクレード ルがペアリングされます。通信はロック状態、ロック解除状態 (デフォルト)またはロック無効化状態にすることができ ます。各モードについては、ペアリング モード (4-21 ページ)を参照してください。ロック モードでは、(4-23 ページ)以 降に記載されたコネクション維持時間バーコードをスキャンして、ロック間隔を設定します。

この動作モードを有効にするには、「ポイント・ツー・ポイント」をスキャンします。

マルチポイント・ツー・ポイント通信

マルチポイント・ツー・ポイント通信モードでは、1 台のクレードルに対して、CR0078-S の場合には最大 3 台のリニア イメージャー スキャナをペアリングでき、CR0078-P の場合には最大 7 台のリニア イメージャー スキャナをペアリング できます。

このモードを有効にするには、クレードルに接続した最初のリニア イメージャー スキャナで「マルチポイント・ツー・ポ イント」バーコードをスキャンします。このモードでは、パラメータ ブロードキャスト機能 (4-20 ページ) を使用して、 接続されているすべてのリニア イメージャー スキャナにパラメータ バーコード設定を転送できます。1 台のリニア イ メージャー スキャナをプログラミングすると、設定内容を接続されているすべてのリニア イメージャー スキャナに適用す ることができます。

ポイント・ツー・ポイント モードまたはマルチポイント・ツー・ポイント モードを選択するには、該当するバーコー ドをスキャンします。

マルチポイント・ツー・ポイント モード (1)

*ポイント・ツー・ポイント モード (0)

パラメータ ブロードキャスト(クレードル ホストのみ)

パラメータ番号 148

マルチポイント・ツー・ポイント モードのとき、スキャンされたすべてのパラメータ バーコードをピコネット内の他の すべてのリニア イメージャー スキャナに伝達するには、パラメータ ブロードキャストを有効にします。無効を選択する と、パラメータ バーコードは個々のリニア イメージャー スキャナのみで処理され、リニア イメージャー スキャナは他の リニア イメージャー スキャナまたはクレードルからのパラメータ ブロードキャストを無視します。

*パラメータ ブロードキャストを有効にする (1)

パラメータ ブロードキャストを無効にする (0)

ペアリング

ペアリングは、リニア イメージャー スキャナがクレードルとの通信を開始するために必要なプロセスです。マルチポイン ト・ツー・ポイントをスキャンすると、複数のリニア イメージャー スキャナからクレードルへの接続が有効になり、1 台 のクレードルに対して、CR0078-S の場合には最大3台のリニア イメージャー スキャナをペアリングでき、CR0078-P の 場合には最大7台のリニア イメージャー スキャナをペアリングできます。

リニア イメージャー スキャナとクレードルをペアリングするには、ペアリングバーコードをスキャンします。高音→低 音→高音→低音のビープ音シーケンスが鳴り、ペアリングバーコードを読み取ったことを示します。クレードルとリニア イメージャー スキャナの接続が確立すると、低音→高音のビープ音が鳴ります。

注 1. リニア イメージャー スキャナをクレードルに接続するペアリングバーコードは、各クレードルにより異なります。
2. ペアリングが完了するまで、データやパラメータをスキャンしないでください。
3. リニア イメージャー スキャナが SPP マスタ モードまたはクレードル ホスト モードでクレードルとの間でペアリン グされている場合、無線通信が途切れて切断されると、リニア イメージャー スキャナは自動的にリモート デバイス との再接続を試みます。詳細については、自動再接続機能 (4-14 ページ) を参照してください。

ペアリング モード

パラメータ番号542

クレードルを使用する場合、次の2種類のペアリングモードがサポートされます。

- ロックペアリングモード クレードルがリニアイメージャースキャナ(マルチポイント・ツー・ポイントモードの場合、CR0078-Sのときには最大3台のリニアイメージャースキャナ、CR0078-Pの場合、最大7台のリニアイメージャースキャナ)とペアリング(接続)されている場合、クレードルの「PAIR」バーコードをスキャン、または装着によるペアリングが有効になっている状態でクレードル(4-22ページ)にリニアイメージャースキャナを装着することで、別のリニアイメージャースキャナを接続しようとしても拒絶されます。現在接続されているリニアイメージャースキャナは、その接続を維持します。このモードでは、コネクション維持時間(4-23ページ)を設定する必要があります。
- ロックペアリングモード
 - CR0078-S クレードルでは、ポイント・ツー・ポイント モードでのみロックされていないペアリング モードを 使用できます。クレードルの「PAIR」バーコードをスキャンするか、装着によるペアリング機能を有効にして リニアイメージャースキャナをクレードルに装着することで、新しいリニアイメージャースキャナをいつでもクレー ドルにペアリング(接続)できます。元のリニアイメージャースキャナとクレードルとのペアリングは解除されます。
 - CR0078-P クレードルでは、ポイント・ツー・ポイント モードとマルチポイント・ツー・ポイント モードの両方でロックされていないペアリング モードを使用できます。クレードルの「PAIR」バーコードをスキャンするか、装着によるペアリング機能を有効にしてリニア イメージャー スキャナをクレードルに装着することで、新しいリニア イメージャー スキャナをいつでもクレードルにペアリング(接続)できます。
 - ポイント・ツー・ポイントモードでは、元のリニアイメージャースキャナとクレードルとのペアリングが解除されます。
 - マルチポイント・ツー・ポイントモードでは、8番目のスキャナが接続を試行したときに、割り当てを確保 するために既に接続済みのいずれかのスキャナとの接続を解除します。
- クレードル ペアリング モードを設定するには、以下の該当するバーコードをスキャンします。

^{*} 非ロック ペアリング モード (0)

ロック ペアリング モード (1)

4 - 22 LI4278 プロダクト リファレンス ガイド

ロック無効化

「ロック無効化」を選択すると、ロックされているリニア イメージャー スキャナの基本ペアリングが解除され、新しいリ ニア イメージャー スキャナが接続されます。マルチポイント・ツー・ポイント モードでは、接続が切断された (通信エリア 外の) リニア イメージャー スキャナとのペアリングを解除してから、新しいリニア イメージャー スキャナが接続されます。 「ロック無効化」を使用するには、下のバーコードをスキャンしてからクレードルのペアリングバーコードをスキャンします。

ロック無効化

ペアリング方法

パラメータ番号 545

ペアリングは2種類の方法で実行することができます。デフォルトの方法では、クレードルのペアリングバーコードをスキャン したときに、リニア イメージャー スキャナとクレードルをペアリング(接続)することができます。2 つ目の方法は、リ ニア イメージャー スキャナがクレードルに装着されたときに、リニア イメージャー スキャナとクレードルをペアリング します。後者の方法を使用する場合は、以下の装着によるペアリングを有効化をスキャンしてください。このペアリング方法を 有効にしている場合は、クレードルのペアリングバーコードをスキャンする必要はありません。スキャナをクレードルに セットし、ペアリングに成功すると、低音→高音の順番でビープ音シーケンスが数秒間鳴ります。他のビープ音シーケン スについては、ワイヤレスのビープ音の定義(4-3 ページ)を参照してください。

装着によるペアリングを有効または無効にするには、以下の該当するバーコードをスキャンします。

^{*} 装着によるペアリングを有効にする (1)

装着によるペアリングを無効にする (0)

ペアリング解除

リニア イメージャー スキャナとクレードルまたは PC/ホストとのペアリングを解除して、クレードルと他のリニア イ メージャー スキャナをペアリングできるようにします。次のバーコードをスキャンすると、クレードルまたは PC ホスト から切断します。

ペアリング解除バーコードは、『LI4278 Quick Reference Guide』にも記載されています。

ペアリング解除

ペアリングバーコードのフォーマット

リニア イメージャー スキャナを SPP マスタとして設定するときは、リニア イメージャー スキャナを接続できる Bluetooth リモート デバイスのペアリングバーコードを作成する必要があります。バーコードの作成には、接続先リモー ト デバイスの Bluetooth アドレスが必要になります。ペアリングバーコードは Code 128 バーコードで、次のようにフォー マットされます。

<Fnc 3>Bxxxxxxxxxxxxxxx

値は次のとおりです。

- **B** (または LNKB) はプリフィックス
- xxxxxxxxxxxx は、12 文字の Bluetooth アドレスを表します。

ペアリングバーコードの例

リニア イメージャー スキャナを接続できるリモート デバイスの Bluetooth アドレスが 11:22:33:44:55:66 の場合、ペアリ ングバーコードは次のとおりです。

(B' + Bluetooth アドレス B112233445566

コネクション維持時間

パラメータ番号 5002

/ 注 コネクション維持時間は、ロックペアリングモード((4-21ページ))にのみ適用されます。

リンク監視タイムアウトが原因でリニア イメージャー スキャナがクレードルから切断された場合、リニア イメージャー スキャナはすぐにクレードルへの再接続を 30 秒間試みます。自動再接続が失敗した場合は、リニア イメージャー スキャ ナのトリガを引いて再接続を再開できます。

切断されたリニア イメージャー スキャナが通信エリア内に戻った場合に再接続できるようにするために、クレードルは そのリニア イメージャー スキャナに対する接続を「コネクション維持時間」で定義した期間、予約します。クレードル が最大の3台のリニア イメージャー スキャナをすでにサポートしている状態で、1台のリニア イメージャー スキャナが 切断された場合、この期間は4台目のリニア イメージャー スキャナはクレードルに接続できません。別のリニア イメー ジャー スキャナに接続するには、次の手順を実行します。コネクション維持時間が終わるまで待ち、新しいリニア イメー ジャー スキャナでクレードルの「PAIR」バーコードをスキャンするか、新しいリニア イメージャー スキャナで「ロック 無効化」(4-22 ページ) をスキャンしてからクレードルの「PAIR」バーコードをスキャンします。

注 CR0078-S クレードルが最大 3 台のリニア イメージャー スキャナを、CR0078-P が最大 7 台のリニア イメージャー スキャナをサポートしている場合、各リニア イメージャー スキャナのリモート ペアリング アドレスは、リニア イ メージャー スキャナの状態 (バッテリの放電など)に関係なく、メモリに保存されます。クレードルにペアリングさ れているリニア イメージャー スキャナを変更する場合には、ペアリング解除バーコードをスキャンして現在クレード ルに接続されているリニア イメージャー スキャナのペアリングを解除し、クレードルの「PAIR」バーコードをスキャ ンして対象のリニア イメージャー スキャナを再接続します。

考慮事項

コネクション維持時間はシステム管理者が決定します。間隔を短くすると、新しいユーザーが使用されなくなった接続に すばやくアクセスできるようになりますが、その期間を過ぎてユーザーが作業エリアを離れた場合などに問題が発生しま す。間隔を長くすると、既存のユーザーは長時間作業エリアを離れることができますが、その間新しいユーザーはシステ ムを利用できなくなります。

この対立を避けるには、シフトを外れる予定のユーザーが (4-22 ページ)のペアリング解除バーコードをスキャンし、コネクション維持間隔を無視して直ちに接続を利用できるようにします。

コネクション維持時間(続き)

コネクション維持時間を設定するには、以下のバーコードのいずれかをスキャンします。

*間隔を 15 分に設定 (0)

間隔を 30 分に設定 (1)

間隔を 60 分に設定 (2)

間隔を 2 時間に設定 (3) コネクション維持時間(続き)

]쪰を4時间に設 (4)

間隔を 8 時間に設定 (5)

間隔を 24 時間に設定 (6)

間隔を無制限に設定 (7)

4 - 26 LI4278 プロダクト リファレンス ガイド

バッチ モード

パラメータ番号 544

リニア イメージャー スキャナは、3 種類のバッチ モードをサポートしています。リニア イメージャー スキャナがいずれ かのバッチ モードに設定されると、送信が初期化されるか、保存されたバーコードが最大数に達するまで、バーコード データ (パラメータ バーコードではなく)が保存されます。バーコードが正常に保存されると、読み取り成功ビープ音が 鳴り、LED が緑に点滅します。リニア イメージャー スキャナが新しいバーコードを保存できない場合は、メモリ不足を 示すビープ音 (低音→高音→低音→高音)が鳴ります。ビープ音および LED の各定義については、2-1 および 2-5 を参照し てください。

すべてのモードで、リニア イメージャー スキャナが保存可能なデータの量 (バーコードの数)を次のように計算できます。

保存可能なバーコードの数 = 9,000 バイトのメモリ / (バーコード内の文字数 + 3)

注 あるバッチ モードでバーコードを保存中に他のバッチ モードに変更すると、それまでに読み取ったバーコード データをすべて送信した後、変更したバッチ モードが適用されます。

動作モード

- 通常(デフォルト)-データをバッチモードで処理しません。スキャンされたすべてのバーコードを送信します。
- 通信エリア外バッチ モード リモート デバイスとの接続を失うと (たとえば、リニア イメージャー スキャナを持っ て通信エリア外に出たとき)、リニア イメージャー スキャナはバーコード データの保存を開始します。 リモート デバイスとの接続を再確立すると (たとえば、リニア イメージャー スキャナを持って通信エリア内に戻る)、データ送信が開始されます。
- 標準バッチ モード 「バッチ モード移行」がスキャンされた後、リニア イメージャー スキャナはバーコード デー タの保存を開始します。「バッチ データ送信」をスキャンするとデータ転送が開始されます。

🧨 注 リモート デバイスとの接続が失われると、転送は休止します。

- クレードル/ケーブル接触バッチモード -「バッチモード移行」がスキャンされると、リニアイメージャースキャナはバーコードデータの保存を開始します。クレードルにリニアイメージャースキャナを装着すると、データ転送が開始されます。
- 注 バッチデータの転送中にリニア イメージャー スキャナがクレードルから取り外された場合、リニア イメージャー スキャナがクレードルに再装着されるまで送信は休止します。

どのモードでも、リニア イメージャー スキャナを持って通信エリア外に出ると、データ転送は休止します。そして、リ ニア イメージャー スキャナを持って通信エリア内に戻ったときにデータ転送が再開されます。バッチ データの転送中に バーコードをスキャンすると、そのデータはバッチ データの末尾に追加されます。パラメータ バーコードは保存されま せん。

無線通信 4-27

バッチ モード(続き)

通信エリア外バッチ モード (01h)

標準バッチ モード (02h)

クレードル/ケーブル接触バッチ モード (03h)

バッチ モード移行

バッチ データ送信

ページ ボタン

パラメータ番号 746

CR0078-P クレードルには、ページ ボタンがあります (CR0078-P シリーズ クレードル (1-6 ページ) を参照)。ページ ボ タンは、センサーになっており、タッチすると、ペアリングされているスキャナがビープ音を鳴らします。デフォルトの 設定は、「ページ ボタンを無効化」になっています。

- 1. 指をボタン センサー 🖓 の上に置きます。
- 2. 約1秒間、下に押します。
- スキャナがクレードルから取り外されていると、クレードルの LED は青色になります。ペアリングされたスキャナが5回ビープ音を鳴らします。1台のクレードルに複数のスキャナがペアリングされている場合は、すべてのスキャナが5回ビープ音を鳴らします。
- 4. 必要に応じて、手順1~3を繰り返します。
- ✓ 注 無線エリア外にあるスキャナは、呼び出されてもビープ音を鳴らしません。無線エリアの詳細については、技術仕様 (3-9 ページ)を参照してください。

以下のいずれかのバーコードをスキャンして、この機能を有効または無効にします。

*ページ ボタンを無効化 (0)

ページ ボタンを有効化 (1)

Bluetooth セキュリティ

リニア イメージャー スキャナは、Bluetooth 認証・暗号化機能をサポートしています。認証は、リモート デバイスまたは リニア イメージャー スキャナからでも要求できます。認証が完了すると、いずれかのデバイスが暗号化を有効にするた めにネゴシエートします。

✓ 注 リモート デバイスは引き続き認証を要求できます。

認証

パラメータ番号 549

リモート デバイス (クレードルを含む) に認証を設定するには、「認証有効」 バーコードをスキャンします。 リニア イメージャー スキャナでの認証設定を禁止するには、「認証無効」 バーコードをスキャンします。

認証有効 (1)

*認証無効 (0)

PIN コード

パラメータ番号 552

PIN コード (パスワードなど) をリニア イメージャー スキャナに設定および保存してホストに接続するには次の手順を行います。

- 1. 以下の「PIN コードの設定と保存」バーコードをスキャンします。
- 2. (E-1 ページ)から5桁分の英数字バーコードをスキャンします。
- 3. メッセージの終わり (E-7 ページ) をスキャンします。

デフォルト PIN コードは、**12345** です。

リニア イメージャー スキャナが、セキュリティが有効になっているホストと通信する場合は、リニア イメージャー ス キャナとホストで PIN コードを一致させてください。そのためには、PIN コードの設定時にリニア イメージャー スキャ ナをホストに接続しておきます。リニア イメージャー スキャナをホストに接続しないで使用している場合は、PIN コード はリニア イメージャー スキャナだけに設定されます。リニア イメージャー スキャナ/ホスト間にセキュリティが必要な 環境で、PIN コードが一致しない場合は、ペアリングできません。

注 オープン Bluetooth を使用する場合の追加のセキュリティとして 16 文字の拡張 PIN コードを使用できます (SPP および HID)。

PIN コードの設定と保存

可変 PIN コード

パラメータ番号608

認証有効を使用してクレードル ホスト モードに切り替える場合、以下の「**静的 PIN コード」**をスキャンして PIN コード が手動で入力されないようにします。メモリに保存された PIN が使用されます。以下の「**可変 PIN コード」**をスキャンし て、各接続で PIN コードを手動で入力します。

デフォルトの PIN コードは、上記で設定および保存されたユーザ設定の PIN になります。ただし、通常は HID 接続に可 変 PIN コードの入力が必要です。接続を試行したとき、アプリケーションが PIN を含むテキスト ボックスを表示した場 合は、「可変 PIN コード」バーコードをスキャンした後、接続を再試行してください。リニア イメージャー スキャナが英 数字の入力待ちを示すビープ音が鳴ったら、英数字キーボード (E-1 ページ) を使用して可変 PIN を入力します。コードが 16 文字未満の場合には、コードの最後でメッセージの終わり (E-7 ページ)のバーコードをスキャンします。リニア イメー ジャー スキャナは、接続後、可変 PIN コードを廃棄します。

静的 PIN コード (0)

(1)

暗号化

パラメータ番号 550

注 暗号化が有効になる前に、認証を実行する必要があります。

リニア イメージャー スキャナの暗号化をセットアップするには、「暗号化の有効」をスキャンします。リニア イメージャー スキャナで暗号化を禁止にするには、「暗号化の無効」をスキャンします。 有効にした場合、無線機器によってデータが暗 号化されます。

暗号化の有効 (1)

^{*}暗号化の無効 (0)

Secure Simple Pairing の IO 機能 (SPP サーバーおよび SPP マスタ ホスト モードのみ)

パラメータ番号 911

Bluetooth 2.1 は、Secure Simple Pairing メソッドを使用してデバイスの認証や暗号化キーの作成を行います。アルゴリ ズムの一部として、デバイスは IO 機能を示す必要があります。シリアル プロファイル ホスト (マスタまたはスレーブ) 内にある場合、デフォルトは「入力なし/出力なし」になっており、データ入力は必要ありませんが、デバイスによって ペアリングプロセスの確認が求められる場合があります。

「キーボードのみ」(パスキー入力)は、ディスプレイを行うデバイスと数字キーパッド入力を行うデバイス(キーボード など)間、または数字キーパッド入力を行う2つのデバイス間で使用します。前者の場合、ディスプレイは6桁の数字コー ドをユーザに表示するために使用され、ユーザーはキーパッド上でコードを入力します。後者の場合、各デバイスのユー ザーは同じ6桁の数字を入力します。

/ 注 このオプションは、Android タブレットへの接続に使用する必要があります。

• 入力なし/出力なし:最小限のセキュリティ(一部のデバイスでは使用できない場合があります)。

キーボードのみ:ハイレベルのセキュリティ。

^{*}入力なし/出力なし (03h)

キーボードのみ (02h)

Bluetooth 無線、リンク、およびバッチ操作

LI4278 リニア イメージャー スキャナには、Bluetooth Class 2 無線が搭載されており、無線は少なくとも 135m / 440 フィート (屋外、見通し距離)の範囲に届きます。実際の到達範囲は、他の無線、棚材や壁材の有無やテストされるクレー ドルに影響されます。環境によって無線到達範囲は影響を受けます。

リニア イメージャー スキャナがベースの通信エリア外に出た場合、バッチ モードを設定することができます (**バッチ** モード (4-26 ページ) を参照)。 リニア イメージャー スキャナには、一般的サイズで 500 のバーコード (UPC/EAN) を保存 するのに十分なオンボード メモリが搭載されています。

リニア イメージャー スキャナを使用するように iOS または Android 製品を設定するには

デバイス上で次の手順を実行して、リンクを確立します。

HID キーボード エミュレーション

- 1. Ll4278 上で Bluetooth キーボード エミュレーション (HID Slave) (4-4 ページ) をスキャンします。
- iOS、iPad、または iPhone 上では、[Settings] > [General] > [Bluetooth] を選択し、Bluetooth をオンにします。検出 されたデバイスのリストから LI4278 リニア イメージャー スキャナを選択します。リンクが確立され、キーボード入 力を使用するアプリケーションのスキャンが可能になります。
- Android、ET/1、または Droid 上では、[Settings] > [Wireless & networks] > [Bluetooth] を選択します (Bluetooth が オンになっていない場合はオンにします)。[Bluetooth settings] を選択し、検出されたデバイスのリストから Ll4278 リニア イメージャー スキャナを選択します (Ll4278 リニア イメージャー スキャナは通常、Ll4278 - xxxxxx と表示さ れます。xxxxxx はシリアル番号になります)。

重要 Android デバイス、特に ET/1 では、接続に PIN のスキャンが必要な場合があります。その場合、PIN がデバイスに表示されます。必要な PIN を入力するには、バーコード (可変 PIN コード (1) (4-30 ページ)) をスキャンしてから再度接続を試行します。スキャナが PIN 入力待ちを示すビープ音が鳴ったら、英数字キーボード (E-1 ページ) を使用して PIN をスキャンします。スキャン入力を間違えた場合は、キャンセル (E-7 ページ) をスキャンすることで削除できます。

詳細については、可変 PIN コード (4-30 ページ)のセクションを参照してください。

第5章 ユーザー設定とその他のデジタル スキャナオプション

はじめに

必要に応じて、リニア イメージャーをプログラミングして、さまざまな機能を実行したり、有効にしたりすることができ ます。この章では、イメージング設定機能を説明するとともに、その機能を選択するためのプログラミング バーコードを 掲載しています。

リニア イメージャーは、設定パラメータのデフォルト値 (5-2 ページ)に示す設定で出荷されています。すべてのホスト デバイスやその他のデフォルト値については、付録 A、標準のデフォルト設定パラメータを参照してください。デフォルト値が要件に適合している場合、プログラミングは必要ありません。

機能の値を設定するには、1 つのバーコードまたは短いバーコード シーケンスをスキャンします。これらの設定は不 揮発性メモリに保存され、リニア イメージャーの電源を落としても保持されます。

注 多くのコンピュータでは、画面上でバーコードを直接スキャンできます。画面からスキャンする場合、バーコードが 鮮明に見え、バーやスペースが結合して見えたりしないレベルに文書の倍率を設定してください。

USB ケーブルを使用しない場合は、電源投入ビープ音が鳴った後、ホスト タイプを選択してください。特定のホスト情報 については、各ホストの章を参照してください。この操作は、新しいホストに接続して初めて電源を入れるときにのみ必 要です。

すべての機能をデフォルト値に戻すには、**デフォルト設定パラメータ (5-4 ページ)** をスキャンします。プログラミング バーコード メニュー全体で、アスタリスク (^{*}) はデフォルト値を示しています。

機能 / オプション

* はデフォルトを示す * 電源投入時ビープ音を抑止しない // (00h) _____

- SSI コマンドを使用して プログラミングを行う際 の 16 進値 (オプション)

スキャン シーケンスの例

多くの場合、1 つのバーコードをスキャンすることでパラメータ値が設定されます。たとえば、ビープ音を高音に設定するには、ビープ音 (5-7 ページ)の下に掲載された「高周波数」(ビープ音)バーコードをスキャンします。短い高音のビープ音が 1回鳴って LED が緑色に変われば、パラメータの設定は成功です。

他のパラメータでは、いくつかのバーコードをスキャンする必要があります。その手順については、パラメータの説明を 参照してください。

スキャン中のエラー

特に指定されていない限り、スキャン シーケンス中のエラーは、正しいパラメータを再スキャンすることで修正できます。

ユーザー設定/その他のオプションパラメータのデフォルト値

表 5-1 に設定パラメータのデフォルトを示します。デフォルト値を変更するには、次の手順に従います。

 このガイドの該当するバーコードをスキャンします。スキャンした新しい値が、メモリ内にある標準のデフォルト 値に置き換わります。デフォルトのパラメータ値を再び呼び出すには、デフォルト設定パラメータ (5-4 ページ) を スキャンします。

123Scan² 設定パラメータを使用してリニアイメージャースキャナを設定します (123SCAN2 (10-1 ページ)を参照)。

注 すべてのユーザー設定、ホスト、シンボル体系、およびその他のデフォルト設定パラメータについては、付録 A、標準のデフォルト設定パラメータを参照してください。

このガイドでは、記載されているパラメータ番号は、当該のパラメータの属性番号と同じです。

表 5-1 設定パラメータのデフォルト値

パラメータ	パラメータ 番号	デフォルト	ページ番号
ユーザー設定			
デフォルト設定パラメータの設定		デフォルト設定	5-4
バージョン通知		N/A	5-5
パラメータ バーコードのスキャン	236	有効	5-5
読み取り成功時のビープ音	56	有効	5-6
読み取り照明インジケータ	859	無効	5-6
ビープ音	145	中音	5-7
電源投入時ビープ音を抑止	721	抑止しない (無効)	5-8
ビープ音の音量	140	×	5-8
ビープ音を鳴らす時間	628	中程度	5-9
ハンドヘルド トリガ モード	138	レベル	5-9
ハンズフリー モード	630	有効	5-10
ロー パワー モード	128	有効	5-10
ロー パワー モード移行時間	146	100 ミリ秒	5-11

ユーザー設定とその他のデジタル スキャナ オプション 5-3

パラメータ	パラメータ 番号	デフォルト	ページ番号
プレゼンテーション スリープ モード移行時間	662	5分	5-12
自動照準からロー パワー モードへのタイムアウト	729	15 秒	5-14
連続バーコード読み取り	649	無効	5-15
ユニーク バーコード読み取り	723	無効	5-15
読み取りセッション タイムアウト	136	9.9 秒	5-16
同一バーコードの読み取り間隔	137	0.5 秒	5-16
異なるバーコードの読み取り間隔	144	0.2 秒	5-16
読み取り照明	298	有効	5-17
その他のオプション			
コード ID キャラクタの転送	45	なし	5-18
プリフィックス値	99、105	7013 <cr><lf></lf></cr>	5-19
サフィックス 1 の値 サフィックス 2 の値	98、104 100、106	7013 <cr><lf></lf></cr>	5-19
スキャン データ転送フォーマット	235	データどおり	5-20
FN1 置换值	103、109	設定	5-21
「読み取りなし」メッセージの転送	94	無効	5-22
非請求ハートビート間隔	1118	無効	5-23
スキャナ パラメータのダンプ			5-24

ユーザー設定

デフォルト設定パラメータ

スキャナは、2種類のデフォルト値に戻すことができます。工場出荷時デフォルトとカスタム デフォルトです。スキャ ナをデフォルト設定にリセットしたり、スキャナの現在の設定をカスタム デフォルトとして設定したりするには、以下の 該当するバーコードをスキャンします。

- デフォルト設定 「デフォルト設定」バーコードをスキャンすると、次のようにすべてのパラメータがデフォルト にリセットされます。
 - カスタム デフォルト値が設定されている場合(「カスタム デフォルトの登録」を参照)、下記のデフォルト設定 バーコードをスキャンするたびにすべてのパラメータがカスタム デフォルト値に戻ります。
 - カスタム デフォルト値が設定されていない場合は、下記のデフォルト設定バーコードをスキャンするたびにすべてのパラメータが工場出荷時デフォルト値に戻ります(工場出荷時デフォルト値については、付録 A、標準のデフォルト設定パラメータ(A-1 ページ)を参照してください)。
- 工場出荷時デフォルト設定 下記の工場出荷時デフォルト設定バーコードをスキャンすると、すべてのカスタム デフォルト値を削除し、スキャナを工場出荷時デフォルト値に設定します(工場出荷時デフォルト値については、付録 A、標準のデフォルト設定パラメータ(A-1 ページ)を参照してください)。
- カスタムデフォルトの登録 カスタムデフォルト設定パラメータを設定し、すべてのパラメータに対して一意のデフォルト値を設定することができます。すべてのパラメータを目的のデフォルト値に変更した後、下記のカスタムデフォルトの登録バーコードをスキャンしてカスタムデフォルトを設定します。

*デフォルト設定

工場出荷時デフォルト設定

カスタム デフォルトの登録

ユーザー設定とその他のデジタルスキャナオプション 5-5

バージョン通知

リニア イメージャー スキャナにインストールされているソフトウェアのバージョンを通知します。

ソフトウェアのバージョン通知

パラメータ バーコードのスキャン

パラメータ番号236

パラメータ バーコード (デフォルト設定パラメータ バーコードを含む) の読み取りを無効にするには、下記のパラメータ のスキャンを無効にするバーコードをスキャンします。パラメータ バーコードの読み取りを有効にするには、パラメータ のスキャンを有効にするをスキャンします。

*パラメータ バーコードのスキャンを有効にする (01h)

パラメータ バーコードのスキャンを無効にする (00h)

読み取り成功時のビープ音

パラメータ番号 56

読み取りが成功したときにビープ音を鳴らすかどうかを選択します。「**読み取り成功時にビープ音を鳴らさない**」を選択し た場合でも、パラメータ メニューをスキャンしているときと電源を投入したときはビープ音が鳴り、エラー状態を通知し ます。

^{*}読み取り成功時のビープ音 (有効) (01h)

読み取り成功時にビープ音を鳴らさない (無効) (00h)

読み取り照明インジケータ

パラメータ番号859

読み取り成功時に照明を点滅させるかどうかを選択します。

* 読み取り照明インジケータ無効 (00h)

1 回点滅 (01h)

2 回点滅 (02h) ユーザー設定とその他のデジタル スキャナ オプション 5-7

ビープ音

パラメータ番号145

読み取りビープ音の周波数(トーン)を選択するには、下記のバーコードのいずれかをスキャンします。

オフ (03h)

低音 (02h)

^{*}中音 (01h)

高音 (00h)

中音から高音 (2 音) (04h)

5-8 LI4278 プロダクト リファレンス ガイド

電源投入時ビープ音を抑止

パラメータ番号 721

リニア イメージャースキャナの電源を入れたとき、ビープ音を鳴らすかどうかを選択します。

^{*} 電源投入時ビープ音を抑止しない (00h)

電源投入時ビープ音を抑止 (01h)

ビープ音の音量

パラメータ番号140

次の低音量、中音量、大音量でビープ音の音量を設定します。

低音量 (02h)

中音量 (01h)

^{*}大音量 (00h)
ユーザー設定とその他のデジタル スキャナ オプション 5-9

ビープ音を鳴らす時間

パラメータ番号 628

ビープ音を鳴らす時間を選択するには、下記のいずれかのバーコードをスキャンします。

短め (00h)

^{*}中程度 (01h)

長め (02h)

ハンドヘルド トリガ モード

パラメータ番号138

リニア イメージャー スキャナには2種類のトリガ モードがあり、次のいずれかを選択できます。

- 標準(レベル)-トリガを引くと読み取り処理が開始されます。バーコードの読み取りが完了するか、トリガを放すか、または読み取りセッションタイムアウトが発生するまで、読み取りは継続されます。
- 自動照準 このトリガモードでリニアイメージャースキャナを持ちあげると、赤色の照明が点灯します。トリガを引くと読み取り処理が有効になります。待機状態が2秒経過すると、レーザ照準パターンは投影されなくなります。

*標準(レベル) (00h)

自動照準 (09h)

5-10 LI4278 プロダクト リファレンス ガイド

ハンズフリー トリガ モード

パラメータ番号 630

ハンズフリー モードの場合、バーコードをリニア イメージャー スキャナに提示すると、自動的に読み取りを開始します。 リニア イメージャー スキャナを持ち上げると、ハンドヘルド トリガ モード (5-9 ページ)の設定に応じて動作します。

/ 注 ハンズフリーモードでは、CR0078-Pクレードルが必要です。

「ハンズフリー モードを無効にする」を選択すると、ハンドヘルド モード、ハンズフリー モードのどちらを使用していても、 ハンドヘルド トリガ モードの設定になります。

*ハンズフリー モードを有効にする (01h)

ハンズフリー モードを無効にする (00h)

ロー パワー モード

パラメータ番号128

リニア イメージャー スキャナはロー パワー モード移行時間の終了後に低電力消費モードになり、節電とスキャナの寿命 延長のため LED が消灯します。リニア イメージャー スキャナのトリガを引くか、ホストが通信を行うと、アクティブ モードに戻ります。

無効にすると、それぞれの読み取りの試行後も電源はオンのままになります。

ノ 注 リニア イメージャー スキャナはクレードルにセットされているとロー パワー モードになりません。

ロー パワー モードを無効にする (00h)

(01h)

ユーザー設定とその他のデジタル スキャナ オプション 5-11

ローパワーモード移行時間

パラメータ番号 146

リニア イメージャー スキャナがスキャン操作の後にロー パワー モードに切り替わるまでの時間を設定します。時間を設 定するには、下記の該当するバーコードをスキャンします。

(65)

500 ミリ秒 (69)

1 秒 (17)

(18)

4 秒 (20)

5 秒 (21)

プレゼンテーション スリープ モード移行時間

パラメータ番号 662

プレゼンテーション モードで使用します。このパラメータで設定した時間が経過すると、スリープ モードに切り替わり、 リニア イメージャー スキャナの照明が消灯します。動きを感知するか、読み取り範囲内でバーコードを検出するか、ま たはトリガが引かれると、アクティブ モードに戻ります。

🕐 注 照明が消灯しているときには、リニア イメージャー スキャナのパフォーマンスは保証されません。

無効 (00h)

1秒 (01h)

10 秒 (0Ah)

(11h)

^{*}5 分 (15h) ユーザー設定とその他のデジタル スキャナ オプション 5-13

プレゼンテーション スリープ モード移行時間(続き)

15 分 (1Bh)

30 分 (1Dh)

45 分 (1Eh)

1 時間 (21h)

3 時間 (23h)

6 時間 (26h)

9 時間 (29h) 自動照準からローパワー モードへのタイムアウト

パラメータ番号729

リニア イメージャー スキャナが自動照準のトリガ モードのとき、ロー パワー モードに切り替わるまでの時間を設定します。

(0)

5 秒 (5)

〕15 杓 (11)

30 秒 (13)

1 分 (17) ユーザー設定とその他のデジタルスキャナオプション 5-15

連続バーコード読み取り

パラメータ番号 649

トリガを押している間に各バーコードを読み取るには、このパラメータを有効にします。

*連続バーコード読み取りを無効にする (0h)

連続バーコード読み取りを有効にする (1h)

ユニーク バーコード読み取り

パラメータ番号 723

トリガを押している間に一意のバーコードのみを読み取るには、このパラメータを有効にします。このオプションは「**連 続バーコード読み取り**」を有効にしたときのみ適用されます。

*連続バーコード読み取りで一意の読み取りを無効にする

(00h)

連続バーコード読み取りで一意の読み取りを有効にする (01h)

読み取りセッション タイムアウト

パラメータ番号 136

このパラメータは、スキャン試行中に読み取り処理を継続する最大時間を設定します。0.5 秒から 9.9 秒まで 0.1 秒刻み でプログラミングできます。デフォルトのタイムアウトは 9.9 秒です。

読み取りセッション タイムアウトを設定するには、下記のバーコードをスキャンします。次に、必要な時間に対応する2 つの数値バーコードを付録 D、数値バーコードでスキャンします。1 桁の数字の場合、先頭にゼロを入力します。たとえ ば、読み取りセッション タイムアウトとして 0.5 秒を設定するには、下記のバーコードをスキャンしてから、0 と5の バーコードをスキャンします。間違いを訂正したり、選択した設定を変更したりする場合は、D-3 ページのキャンセル をスキャンします。

読み取りセッション タイムアウト

同一バーコードの読み取り間隔

パラメータ番号 137

この設定は、プレゼンテーション モードや連続バーコード読み取りを有効にしたときに使用します。スキャナの読み取り 範囲内にシンボルが残っていても、ビープ音が鳴るのを防ぐことができます。スキャナに同じシンボルを読ませる前に、 そのバーコードをタイムアウト時間の読み取り範囲外にする必要があります。0.0 秒から 9.9 秒まで 0.1 秒刻みでプログ ラミングできます。デフォルトは 0.5 秒です。

同一のバーコードの読み取り間隔を選択するには、下記のバーコードをスキャンし、次に必要な間隔 (0.1 秒刻み) に対応 する 2 つの数値バーコードを付録 D、数値バーコードでスキャンします。

同一バーコードの読み取り間隔

異なるバーコードの読み取り間隔

パラメータ番号 144

この設定は、プレゼンテーション モードや連続バーコード読み取りを有効にしたときに使用します。異なるバーコードを 読み取る間にスキャナが非アクティブになる時間を制御します。0.1 秒から 9.9 秒まで 0.1 秒刻みでプログラミングでき ます。デフォルトは、0.2 秒です。

異なるバーコードの読み取り間隔を選択するには、下記のバーコードをスキャンし、次に必要な間隔 (0.1 秒刻み) に対応 する 2 つの数値バーコードを付録 D、数値バーコードでスキャンします。

_ / 注 異なるバーコードの読み取り間隔は、読み取りセッション タイムアウトの値以上の値にすることはできません。

異なるバーコードの読み取り間隔

ユーザー設定とその他のデジタル スキャナ オプション 5-17

読み取り照明

パラメータ番号 298

「読み取り照明を有効にする」をスキャンすると LED 照明が有効になり、画像の品質が向上し、読み取り距離が広くなります。「読み取り照明を無効にする」をスキャンすると LED 照明が使用できなくなります。

*読み取り照明を有効にする (01h)

読み取り照明を無効にする (00h)

その他のスキャナ パラメータ

コード ID キャラクタの転送

パラメータ番号 45

コード ID キャラクタは、スキャンしたバーコードのコード タイプを特定します。この方法は複数のコード タイプを読み 取る場合に便利です。選択された 1 文字のプリフィックスに加え、プリフィックスと読み取ったシンボルの間にコード ID キャラクタが挿入されます。

コード ID キャラクタなし、シンボル コード ID キャラクタ、AIM コード ID キャラクタのいずれかから選択できます。コー ド ID キャラクタについては、**シンボル コード キャラクタ (B-1 ページ)**および **AIM コード キャラクタ (B-2 ページ)**を参 照してください。

 \checkmark

注 シンボル コード ID または AIM コード ID を有効にし、さらに「NR (読み取りなし)」メッセージの転送 (5-22 ページ) を有効にした場合、NR メッセージに Code 39 のコード ID が追加されます。

シンボル コード ID キャラクタ (02h)

(01h)

プリフィックス/サフィックス値

キーカテゴリパラメータ番号 P=99、S1=98、S2=100

10 進数値パラメータ番号 P=105、S1=104、S2=106

プリフィックスと1つまたは複数のサフィックスを追加して、データ編集で使用するデータをスキャンすることができま す。プリフィックス/サフィックス値を設定するには、その値に対応する数字4桁(付録D、数値バーコードの4種類の バーコードなど)をスキャンします。4桁のコードについては、表 F-1 (F-1ページ)を参照してください。

ホスト コマンドを使用してプリフィックスまたはサフィックスを設定するときは、キー カテゴリ パラメータを1に設定 してから3桁の10進数値を設定します。4桁のコードについては、表 F-1 (F-1ページ)を参照してください。 操作を間違ったときや、選択した設定を変更する場合は、キャンセル (D-3ページ)をスキャンします。

注 プリフィックス/サフィックス値を使用するには、スキャンデータ転送フォーマット (5-20 ページ)を最初に設定します。

プリフィックスのスキャン (07h)

サフィックス1のスキャン (06h)

サフィックス 2 のスキャン (08h)

データ フォーマットのキャンセル

スキャン データ転送フォーマット

パラメータ番号 235

スキャン データ フォーマットを変更するには、下記の8つのバーコードの中から目的のフォーマットに対応したバー コードをスキャンします。

プリフィックスおよびサフィックスの値を設定するには、プリフィックス/サフィックス値 (5-19 ページ)を参照してくだ さい。

*データどおり (00h)

<DATA> <SUFFIX 1> (01h)

<DATA> <SUFFIX 2> (02h)

<DATA> <SUFFIX 1> <SUFFIX 2> (03h)

<PREFIX> <DATA > (04h) ユーザー設定とその他のデジタル スキャナ オプション 5-21

スキャンデータ転送フォーマット(続き)

<PREFIX> <DATA> <SUFFIX 1> (05h)

<PREFIX> <DATA> <SUFFIX 2> (06h)

<PREFIX> <DATA> <SUFFIX 1> <SUFFIX 2> (07h)

FN1 置換値

キー カテゴリ パラメータ番号 103

10 進数値パラメータ番号 109

ウェッジおよび USB HID キーボード ホストは FN1 置換機能をサポートしています。この機能を有効にすると、EAN128 バーコードの FN1 キャラクタ (0x1b) が指定された値に置換されます。この値のデフォルトは 7013 (Enter キー) です。

ホスト コマンドを使用して FN1 置換値を設定する場合は、キー カテゴリ パラメータを 1 にした後に 3 桁のキーストロー ク値を設定します。目的の値を検索するには、現在のホスト インタフェースの ASCII キャラクタ セット一覧を参照して ください。

バーコード メニューを使用して FN1 置換値を選択するには、次の手順に従います。

1. 下記のバーコードをスキャンします。

FN1 置換値の設定

 FN1 置換に必要なキーストロークを、現在のホスト インタフェースの ASCII Character Set テーブルで検索します。 付録 D、数値バーコードで各桁をスキャンして、4 桁の ASCII 値を入力します。

間違いを訂正したり、選択した設定を変更したりする場合は、キャンセルをスキャンします。

USB HID キーボードの FN1 置換を有効にするには、5-21 ページの FN1 置換を有効にするバーコードをスキャンしてください。

「NR(読み取りなし)」メッセージの転送

パラメータ番号 94

「NR (読み取りなし)」メッセージを転送するかどうかを選択するには、下記のバーコードをスキャンします。このオプ ションを選択すると、トリガから指を放すか読み取りセッション タイムアウトになるまで読み取りが行われなかった場合 に、NR が転送されます。読み取りセッション タイムアウト (5-16 ページ)を参照してください。シンボルが読み取られ なかった場合にホストに何も送信しないときは、このオプションを無効にします。

「NR (読み取りなし)」メッセージを有効にする (01h)

*「NR (読み取りなし)」メッセージを無効にする (00h)

非請求ハートビート間隔

パラメータ番号 1118

リニア イメージャー スキャナは、診断を支援する目的で、非請求ハートビート メッセージの送信をサポートしています。この機能を有効にし、ハートビート間隔を目的の値に設定するには、下記の時間間隔バーコードのいずれかをスキャンするか、 他の間隔で設定をスキャンし、その後に続けて付録 D、数値バーコードの4つの数値バーコードをスキャンします(目的の 秒数に対応する一連の数字をスキャン)。

この機能を無効にするには、「ハートビート間隔を無効にする」をスキャンします。

このハートビート イベントは、次の形式を使用して (読み取りビープ音なしの) 読み取りデータとして送信されます。 MOTEVTHB:nnn

ここで、nnn は 001 で始まる 3 桁の連続番号であり、100 の次は最初の値に戻ります。

 注 正確な動作を実現するためには、ローパワーモードを無効にする必要があります(ローパワーモード(5-10ページ)を 参照)。

10 秒 (10)

1 分 (60)

他の間隔で設定

ハートビート間隔を無効にする (0)

スキャナ パラメータのダンプ

スキャナの問題をデバッグするには、下記のプログラミング バーコードをスキャンし、スキャナの資産追跡情報とパラ メータ設定をすべて出力します。この情報は、人間が読める形式のテキスト ドキュメントとして出力されます。

USB HID キーボード モードで接続されたスキャナで **STISCANPARAMS** をスキャンし、Microsoft® Windows Notepad または Wordpad に 出力します。あるいは、RS232 経由で接続されたスキャナで Windows Hyperterminal に出力します。この出力におけるパラメータ番号と属性番号の意味は、本ガイドに記載されているパラメータ番号、または『Attribute Data Dictionary』(英語)を参照してください。『Attribute Data Dictionary (72E-149786-xx)』(英語) は次の Zebra Support サイトにあります。http://www.zebra.com/support

STISCANPARAMS

第6章 キーボードインタフェース

はじめに

本章では、キーボードとホスト コンピュータの間でクレードルを接続するために使用する、キーボード インタフェース に関してクレードルをプログラミングする方法について説明します。リニア イメージャーはバーコード データをキース トロークに変換し、クレードル インタフェースを介してホストコンピューターに転送します。ホスト コンピュータは、 キーボードから発信されたかのようにキーストロークを受け入れます。

このインタフェースは、キーボードからの手入力のために設計されたシステムにバーコード読み取り機能を追加します。 このモードでは、キーボードのキーストロークが単純に渡されます。

プログラミング バーコード メニュー全体で、デフォルト値をアスタリスク (*) で示しています。

* はデフォルトを示す ------- * 英語 (U.S.) -------- 機能 / オプション

キーボード インタフェースの接続

▶ リニア イメージャー スキャナとクレードルのペアリングと無線通信については、?4?????を参照してください。

ホスト パラメータの設定を有効にするには、リニア イメージャー スキャナをクレードルに接続する必要があります。リ ニア イメージャー スキャナをクレードルに接続せずに、ホスト パラメータ バーコードをスキャンすると、長い低音→長 い高音のビープ シーケンスが鳴ります。

図 6-1 Y ケーブルによるキーボード インタフェース接続

キーボード インタフェースを接続するには、Yケーブルを使用します。

- 1. ホストの電源をオフにして、キーボード コネクタを外します。
- Y型ケーブルのモジュラ コネクタをリニア イメージャー スキャナー クレードルの底部のホスト ポートに接続します。詳細は、CR0078-S/CR0008-S シリーズ クレードルの接続 (1-8 ページ)または CR0078-P シリーズ クレードルの接続 (1-9 ページ)を参照してください。
- 3. Y ケーブルのキーボードコネクタ (ミニ DIN オス型)を、ホスト デバイスのキーボード ポートに接続します。
- 4. Y ケーブルのキーボードコネクタ (ミニ DIN メス型)を、キーボード コネクタに接続します。
- 5. 必要に応じて、オプションの電源ケーブルを Y ケーブルの中ほどにあるコネクタに接続します。
- 6. すべてのコネクタがしっかり接続されているか確認してください。
- 7. ホスト システムの電源をオンにします。
- 8. キーボード インタフェースのホスト パラメータ (6-4 ページ)から適切なバーコードを選んでスキャンし、キーボー ド インタフェース ホスト タイプを選択します。
- 9. 他のパラメータ オプションを変更するには、この章に掲載された該当するバーコードをスキャンします。

注 必要なインタフェース ケーブルは、設定によって異なります。図 のイラストに示したコネクタは、あくまでも例です。実際には、別のコネクタが使用される場合もありますが、クレードルの接続手順は同じです。

電源を使用している場合、ホスト ケーブルを交換する前に電源を切ってください。そうしないと、クレードルが新しいホ ストを認識できない場合があります。

キーボード インタフェース パラメータのデフォルト

表 6-1 に、キーボード インタフェース ホスト パラメータのデフォルトー覧を示します。オプションを変更する場合 は、(6-4 ページ) 以降の「キーボード インタフェースのホスト パラメータ」セクションに掲載されているものから選ん で適切なバーコードをスキャンします。

 \checkmark

注 すべてのユーザー設定、ホスト、シンボル体系、およびその他のデフォルト設定パラメータについては、付録 A、 標準のデフォルト設定パラメータを参照してください。

表 6-1 キーボード インタフェースのデフォルトの表

パラメータ	デフォルト	ページ番号
キーボード インタフェースのホスト パラメータ		
キーボード インタフェースのホスト タイプ	IBM PC/AT および IBM PC 互換機	6-4
キーボードインタフェースのタイプ(カントリー コード)	英語 (U.S.)	6-5
不明な文字の無視	送信	6-7
キャラクタ間ディレイ	ディレイなし	6-7
キーストローク内ディレイ	無効	6-8
代替用数字キーパッド エミュレーション	無効	6-8
Caps Lock オン	無効	6-9
Caps Lock オーバーライド	無効	6-9
インタフェース データの変換	変換なし	6-10
ファンクション キーのマッピング	無効	6-10
FN1 置換	無効	6-11
メーク/ブレークの送信	送信	6-11

キーボード インタフェースのホスト パラメータ

キーボード インタフェースのホスト タイプ

以下のバーコードから適切なものをスキャンして、キーボード インタフェース ホストを選択します。

*IBM PC/AT および IBM PC 互換機

IBM ノートブック

キーボード インタフェースのタイプ(カントリー コード)

キーボード タイプに対応するバーコードをスキャンします。キーボードがリストにない場合は、**代替用数字キーパッド** エミュレーション (6-8 ページ) を参照してください。

*英語 (U.S.)

ドイツ語版 Windows

フランス語版 Windows

カナダ フランス語版 Windows 95/98

カナダ フランス語版 Windows XP/2000

スペイン語版 Windows

国際フランス語版

6-6 LI4278 プロダクト リファレンス ガイド

キーボード インタフェースのタイプ(カントリー コード)(続き)

イタリア語版 Windows

スウェーデン語版 Windows

イギリス英語版 Windows

日本語版 Windows

ブラジル ポルトガル語版 Windows

不明な文字の無視

不明な文字とは、ホストが認識できない文字です。不明な文字を除いたすべてのバーコード データを送信するには、「不明な文字を含むバーコードを送信する」を選択します。このときエラーを示すビープ音は鳴りません。「不明な文字を含む バーコードを送信しない」を選択した場合、バーコード データは最初の不明な文字まで送信された、その後エラーを示す ビープ音が鳴ります。

*不明な文字を含むバーコードを送信する

不明な文字を含むパーコードを送信しない

キャラクタ間ディレイ

これは、エミュレーションされたキーストローク間でのミリ秒単位のディレイです。ホストが、より遅いデータの転送を 必要とする場合、以下のバーコードをスキャンしてディレイを長くします。

* ディレイなし

中程度のディレイ (20 ミリ秒)

長いディレイ (40 ミリ秒)

キーストローク内ディレイ

有効な場合、エミュレートされたキーを押してから放すまでの間にディレイが挿入されます。これにより、キャラクタ間 ディレイ パラメータが最小値の5ミリ秒に設定されます。

キーストローク内ディレイを有効化

* キーストローク内ディレイを無効化

代替用数字キーパッド エミュレーション

このオプションでは、Microsoft[®] OS 環境において、**キーボード インタフェースのタイプ(カントリー コード)(6-5 ページ)** の一覧にないキーボードタイプのエミュレーションを実行できます。

代替用数字キーパッドを有効にする

* 代替用数字キーパッドを無効にする

Caps Lock オン

有効にすると、リニア イメージャー スキャナは、キーボード上の Caps Lock キーを押したままにしている場合と同じように、キーストロークをエミュレーションします。「Caps Lock オン」と「Caps Lock オーバーライド」の両方を有効にしている場合は、「Caps Lock オーバーライド」が優先されます。

Caps Lock オンを有効化

^{*} Caps Lock オンを無効化

Caps Lock オーバーライド

有効にすると、AT または AT ノートブック ホストで、キーボードが Caps Lock キーの状態を無視します。そのため、バー コードの「A」は、キーボードの Caps Lock キーの状態に関係なく、「A」として送信されます。

「Caps Lock オン」と「Caps Lock オーバーライド」の両方を有効にしている場合は、「Caps Lock オーバーライド」が 優先されます。

Caps Lock オーバーライドを有効化

* Caps Lock オーバーライドを無効化

インタフェース データの変換

すべてのバーコード データを大文字または小文字に変換します。

大文字への変換

小文字への変換

* 変換なし

ファンクション キーのマッピング

32 未満の ASCII 値は、通常、コントロール キー シーケンスとして送信されます (表 6-2 (6-13 ページ) を参照)。このパ ラメータが有効になっている場合は、標準的なキーマッピングの代わりに太字のキーを送信します。このパラメータが有 効になっているかどうかに関係なく、太字エントリを持たないテーブル エントリは同じままです。

ファンクション キーのマッピングを有効にする

* ファンクション キーのマッピングを無効にする

FN1 置換

有効にすると、EAN128 バーコード内の FN1 キャラクタが、ユーザが選択したキー入力値に置換されます (**FN1 置換値** (5-21 ページ) を参照)。

FN1 置換を有効にする

* FN1 置換を無効にする

メーク/ブレークを送信する

有効になっている場合、キーを離すためのスキャン コードは送信されません。

*メーク/ブレーク スキャン コードを送信

メーク スキャン コードのみを送信

キーボードマップ

プリフィックス/サフィックス キーストローク パラメータについては、以下のキーボード マップを参照してください。 プリフィックス/サフィックス値をプログラムするには、(<mark>5-19 ページ)</mark> のバーコードを参照してください。

図 6-2 IBM PS2 タイプ キーボード

キーボード インタフェースの ASCII キャラクタ セット

と
Code 39 Full ASCII は、Code 39 キャラクタの前にあるバーコード特殊文字(\$+%/)を解釈し、ペアに ASCII キャラクタ値を割り当てます。たとえば、Code 39 Full ASCII が有効になっていて、+B がスキャンされた場合、+B は b に、は %J は?に、%V は@に、それぞれ解釈されます。ABC%I をスキャンすると、ABC > に相当するキーストロークが出力されます。

表 6-2 キーボード インタフェースの ASCII キャラクタ セット

ASCII 値	Full ASCII Code 39 エンコード キャラクタ	キーストローク
1001	\$A	CTRL A
1002	\$B	CTRL B
1003	\$C	CTRL C
1004	\$D	CTRL D
1005	\$E	CTRL E
1006	\$F	CTRL F
1007	\$G	CTRL G
1008	\$H	CTRL H/BACKSPACE ¹
1009	\$1	CTRL I/HORIZONTAL TAB ¹
1010	\$J	CTRL J
1011	\$K	CTRL K
1012	\$L	CTRL L
1013	\$M	CTRL M/ENTER ¹
1014	\$N	CTRL N
1015	\$O	CTRL O
1016	\$P	CTRL P
1017	\$Q	CTRL Q
1018	\$R	CTRL R
1019	\$S	CTRL S
1020	\$T	CTRL T
1021	\$U	CTRL U
1022	\$V	CTRL V
¹ 太字のキーストロークは、	「ファンクション キーのマッピング	「」パラメータが有効な場合のみ送

信されます。それ以外の場合は、太字でない方のキーストロークが送信されます。

ASCII 値	Full ASCII Code 39 エンコード キャラクタ	キーストローク
1023	\$W	CTRL W
1024	\$X	CTRL X
1025	\$Y	CTRL Y
1026	\$Z	CTRL Z
1027	%A	CTRL [/ ESC¹
1028	%В	CTRL \
1029	%C	CTRL]
1030	%D	CTRL 6
1031	%Е	CTRL -
1032	スペース	スペース
1033	/A	!
1034	/B	u
1035	/C	#
1036	/D	\$
1037	/E	%
1038	/F	&
1039	/G	1
1040	/H	(
1041	Л)
1042	/J	*
1043	/K	+
1044	/L	•
1045	-	-
1046		
1047	/O	1
1048	0	0
1049	1	1
1050	2	2
1051	3	3

¹太字のキーストロークは、「ファンクション キーのマッピング」パラメータが有効な場合のみ送 信されます。それ以外の場合は、太字でない方のキーストロークが送信されます。______

ASCII 値	Full ASCII Code 39 エンコード キャラクタ	キーストローク
1052	4	4
1053	5	5
1054	6	6
1055	7	7
1056	8	8
1057	9	9
1058	/Z	:
1059	%F	· ,
1060	%G	<
1061	%Н	=
1062	%I	>
1063	%J	?
1064	%V	@
1065	A	A
1066	В	В
1067	С	С
1068	D	D
1069	E	E
1070	F	F
1071	G	G
1072	Н	Н
1073	1	1
1074	J	J
1075	К	К
1076	L	L
1077	М	М
1078	Ν	Ν
1079	0	0
1080	Р	Р

¹ 太字のキーストロークは、「ファンクション キーのマッピング」パラメータが有効な場合のみ送 信されます。それ以外の場合は、太字でない方のキーストロークが送信されます。

ASCII 値	Full ASCII Code 39 エンコード キャラクタ	キーストローク
1081	Q	Q
1082	R	R
1083	S	S
1084	Т	Т
1085	U	U
1086	V	V
1087	W	W
1088	Х	Х
1089	Y	Y
1090	Z	Z
1091	%К	[
1092	%L	١
1093	%M]
1094	%N	٨
1095	%O	-
1096	%W	1
1097	+A	а
1098	+B	b
1099	+C	С
1100	+D	d
1101	+E	е
1102	+F	f
1103	+G	g
1104	+H	時
1105	+1	i
1106	+J	j
1107	+K	k
1108	+L	1
1109	+M	m

¹ 太字のキーストロークは、「ファンクション キーのマッピング」パラメータが有効な場合のみ送 信されます。それ以外の場合は、太字でない方のキーストロークが送信されます。

ASCII 値	Full ASCII Code 39 エンコード キャラクタ	キーストローク
1110	+N	n
1111	+0	0
1112	+P	р
1113	+Q	q
1114	+R	r
1115	+S	S
1116	+T	t
1117	+U	u
1118	+V	V
1119	+W	w
1120	+X	x
1121	+Y	у
1122	+Z	Z
1123	%P	{
1124	%Q	1
1125	%R	}
1126	%S	~

¹ 太宇のキーストロークは、「ファンクション キーのマッピング」パラメータが有効な場合のみ送 信されます。それ以外の場合は、太字でない方のキーストロークが送信されます。

表 6-3 キーボード インタフェースの ALT キー キャラクタ セット

ALT キー	キーストローク
2065	ALT A
2066	ALT B
2067	ALT C
2068	ALT D
2069	ALT E
2070	ALT F
2071	ALT G
2072	ALT H
2073	ALT I
2074	ALT J

ALT キー	キーストローク
2075	ALT K
2076	ALT L
2077	ALT M
2078	ALT N
2079	ALT O
2080	ALT P
2081	ALT Q
2082	ALT R
2083	ALT S
2084	ALT T
2085	ALT U
2086	ALT V
2087	ALT W
2088	ALT X
2089	ALT Y
2090	ALT Z

表 6-3 キーボード インタフェースの ALT キー キャラクタ セット (続き)

表 6-4 キーボード インタフェースの GUI キー キャラクタ セット

GUI キー	キーストローク
3000	右コントロール キー
3048	GUI 0
3049	GUI 1
3050	GUI 2
3051	GUI 3
3052	GUI 4
3053	GUI 5
3054	GUI 6
3055	GUI 7
3056	GUI 8
3057	GUI 9
3065	GUI A
3066	GUI B

GUI +—	キーストローク
3067	GUI C
3068	GUI D
3069	GUI E
3070	GUI F
3071	GUI G
3072	GUI H
3073	GULI
3074	GUI J
3075	GUI K
3076	GUI L
3077	GUI M
3078	GUIN
3079	GUI O
3080	GUI P
3081	GUI Q
3082	GUI R
3083	GUI S
3084	GUI T
3085	GUI U
3086	GUI V
3087	GUI W
3088	GUI X
3089	GUI Y
3090	GUI Z

表 6-4 キーボード インタフェースの GUI キー キャラクタ セット (続き)

表 6-5 キーボード インタフェースの F キー キャラクタ セット

F +	キーストローク
5001	F1
5002	F2
5003	F3
5004	F4

表 6-5 キーボード インタフェースのF キー キ	Fャラクタ セット (続き)
----------------------------	----------------

F +	キーストローク
5005	F5
5006	F6
5007	F7
5008	F8
5009	F9
5010	F10
5011	F11
5012	F12
5013	F13
5014	F14
5015	F15
5016	F16
5017	F17
5018	F18
5019	F19
5020	F20
5021	F21
5022	F22
5023	F23
5024	F24

表 6-6 キーボード インタフェースの数字キーパッド キャラクタ セット

数字キーパッド	キーストローク
6042	*
6043	+
6044	未定義
6045	-
6046	
6047	1
6048	0
6049	1
数字キーパッド	キーストローク
---------	----------
6050	2
6051	3
6052	4
6053	5
6054	6
6055	7
6056	8
6057	9
6058	Enter
6059	Num Lock

表 6-6 キーボード インタフェースの数字キーパッド キャラクタ セット (続き)

拡張キーパッド	キーストローク
7001	Break
7002	Delete
7003	Pg Up
7004	End
7005	Pg Dn
7006	Pause
7007	Scroll Lock
7008	Backspace
7009	Tab
7010	Print Screen
7011	Insert
7012	Home
7013	Enter
7014	Escape
7015	上矢印
7016	下矢印
7017	左矢印
7018	右矢印

表 6-7 キーボード インタフェースの拡張キーパッド キャラクタ セット

第7章 RS-232 インタフェース

はじめに

この章では、RS-232 ホスト インタフェースに接続するクレードルをプログラミングする方法について説明します。有効 な RS-232 ポート (つまり、COM ポート)を使用して販売時点管理デバイス、ホスト コンピュータ、またはその他のデバ イスにスキャナのクレードルを取り付けるためには、RS-232 インタフェースを使用します。

ホストが表 7-2に掲載されていない場合、通信パラメータをホスト デバイスと一致するように設定します。ホスト デバイ スについては、マニュアルを参照してください。

注 リニア イメージャー スキャナでは、ほとんどのシステム アーキテクチャと接続できる TTL RS-232 信号を使用します。RS-232C 信号レベルを必要とするシステム アーキテクチャのために、Zebra では TTL から RS-232C への変換を行うさまざまなケーブルを提供しています。詳細については、Zebra Support にお問い合わせください。

プログラミング バーコード メニュー全体で、デフォルト値をアスタリスク (*) で示しています。

* はデフォルトを示す // *ボーレート 9600 ―― 機能 / オプション

7-2 LI4278 プロダクト リファレンス ガイド

RS-232 インタフェースの接続

注 イメージャー スキャナーとクレードルのペアリングと無線通信については、第4章、無線通信を参照してください。

ホスト パラメータの設定を有効にするには、リニア イメージャー スキャナをクレードルに接続する必要があります。 リニア イメージャー スキャナをクレードルに接続せずに、ホスト パラメータ バーコードをスキャンすると、長い低 音→長い高音のビープ音が鳴ります。

この接続は、クレードルからホストコンピュータに直接行われます。

図 7-1 RS-232 直接接続

注 充電時間を短縮できるように、電源をクレードルに接続します。

RS-232 インタフェースを接続するには、次の手順に従います。

- RS-232 インタフェース ケーブルのモジュラ コネクタをスキャナのクレードルの底部のホスト ポートに接続します。 詳細は、CR0078-S/CR0008-S シリーズ クレードルの接続 (1-8 ページ) または CR0078-P シリーズ クレードルの接続 (1-9 ページ) を参照してください。
- 2. RS-232 インターフェース ケーブルの他方の先端を、ホストのシリアル ポートに接続します。
- 3. AC アダプタを RS-232 インタフェースケーブルのシリアルコネクタに接続します。AC アダプタを適切な電源(コン セント)に差し込みます。
- 4. 該当するバーコードを RS-232 ホスト タイプ (7-6 ページ) からスキャンして、RS-232 のホスト タイプを選択します。
- 5. 他のパラメータ オプションを変更するには、この章に掲載された該当するバーコードをスキャンします。

注 必要なインタフェース ケーブルは、設定によって異なります。図 7-1 のイラストに示したコネクタは、あくまでも例です。実際には、別のコネクタが使用される場合もありますが、クレードルの接続手順は同じです。

電源を使用している場合、ホスト ケーブルを交換する前に電源を切ってください。そうしないと、クレードルが新しいホ ストを認識できない場合があります。

RS-232 パラメータのデフォルト

表 7-1 に RS-232 ホスト パラメータのデフォルトを示します。オプションを変更する場合は、本章の (7-4 ページ)以降に 掲載されているパラメータ説明セクションで適切なバーコードをスキャンします。

すべてのユーザー設定、ホスト、シンボル体系、およびその他のデフォルト パラメータについては、付録 A、標準の デフォルト設定パラメータを参照してください。

表 7-1 RS-232 ホストのデフォルトの表

パラメータ	デフォルト	ページ番号			
RS-232 ホストのパラメータ					
RS-232 ホスト タイプ	標準	7-6			
ボーレート	9600	7-8			
パリティ タイプ	なし	7-9			
ストップ ビットの選択	1 ストップ ビット	7-9			
データ長 (ASCII フォーマット)	8ビット	7-10			
受信エラーのチェック	有効	7-10			
ハードウェア ハンドシェイク	なし	7-12			
ソフトウェア ハンドシェイク	なし	7-14			
ホスト シリアル レスポンス タイムアウト	2秒	7-15			
RTS 制御線の状態	Low	7-16			
<bel> キャラクタによるビープ音</bel>	無効	7-16			
キャラクタ間ディレイ	0ミリ秒	7-17			
Nixdorf のビープ音 /LED オプション	通常の操作	7-18			
不明な文字の無視	バーコードを送信	7-18			

[√] 注

RS-232 ホストのパラメータ

さまざまな RS-232 ホストが、それぞれ独自のパラメータ デフォルト設定でセットアップされています (表 7-2)。ICL、 Fujitsu、Wincor-Nixdorf Mode A、Wincor-Nixdorf Mode B、Olivetti、Omron または端末のいずれかを選択すると、次の表 に示すデフォルトに設定されます。

表 7-2 ターミナル固有 RS-232

パラメータ	ICL	Fujitsu	Wincor- Nixdorf Mode A	Wincor- Nixdorf Mode B/OPOS/JPOS	Olivetti	Omron	CUTE
転送コード ID	はい	はい	はい	はい	はい	はい	はい
データ 転 送 フォー マット	データ/ サフィッ クス	データ/ サフィッ クス	データ/ サフィッ クス	データ/ サフィッ クス	プリフィッ クス/データ/ サフィッ クス	データ/ サフィッ クス	プリフィッ クス/データ/ サフィッ クス
サフィックス	CR (1013)	CR (1013)	CR (1013)	CR (1013)	ETX (1002)	CR (1013)	CR (1013) ETX (1003)
ボーレート	9600	9600	9600	9600	9600	9600	9600
パリティ	偶数	なし	奇数	奇数	偶数	なし	偶数
ハードウェア ハンド シェイク	RTS/CTS オ プション 3	なし	RTS/CTSオ プション 3	RTS/CTS オ プション 3	なし	なし	なし
ソフトウェア ハンド シェイク	なし	なし	なし	なし	ACK/NAK	なし	なし
シリアル レスポンス タイムアウト	9.9 秒	2 秒	9.9 秒	9.9 秒	9.9 秒	9.9 秒	9.9 秒
ストップ ビットの 選択	1つ	1つ	1つ	1つ	1つ	1つ	1つ
ASCII 形式	8ビット	8ビット	8ビット	8ビット	7 ビット	8ビット	7ビット
<bel> キャラクタに よるビープ音</bel>	無効	無効	無効	無効	無効	無効	無効
RTS 制御線の状態	High	Low	Low	Low = 送信 するデータ なし	Low	High	High
プリフィックス	なし	なし	なし	なし	STX (1003)	なし	STX (1002)

Nixdorf Mode B では、CTS が Low の場合、スキャンは無効です。CTS が High の場合、スキャンは有効です。

** リニア イメージャー スキャナが適切なホストに接続されていない場合に Nixdorf Mode B をスキャンすると、スキャンできて いないように見えることがあります。この現象が起こる場合は、リニア イメージャーへの電源の 0N/0FF が行われる 5 秒以内に 別の RS-232C ホスト タイプをスキャンしてください。

CUTE ホストでは、「デフォルト設定」などのすべてのパラメータのスキャニングが無効になります。誤って CUTE スキャンを 選択した場合は、* パラメータ バーコードのスキャンを有効にする (01h) (5-5 ページ) をスキャンしてからホストを変更してくだ さい。

RS-232 ホスト パラメータ (続き)

端末として、ICL、Fujitsu、Wincor-Nixdorf Mode A、Wincor-Nixdorf Mode B、OPOS 端末を選択すると、次の表 7-3 に示 すコード ID キャラクタの転送が有効になります。これらのコード ID キャラクタはプログラム不可で、コード ID 転送機 能とは別個のものです。コード ID 転送機能は、これらの端末では有効にしないでください。

表 7-3 端末固有のコード ID キャラクタ

コードタイプ	ICL	Fujitsu	Wincor- Nixdorf Mode A	Wincor-Nixdorf Mode B/ OPOS/JPOS	Olivetti	Omron	CUTE
UPC-A	А	А	А	А	А	А	A
UPC-E	E	E	С	С	С	E	なし
EAN-8/JAN-8	FF	FF	В	В	В	FF	なし
EAN-13/JAN-13	F	F	А	A	А	F	А
CODE 39	C <len></len>	なし	М	М	M <len></len>	C <len></len>	3
Code 39 Full ASCII	なし	なし	М	М	なし	なし	3
Codabar	N <len></len>	なし	Ν	N	N <len></len>	N <len></len>	なし
CODE 128	L <len></len>	なし	К	к	K <len></len>	L <len></len>	5
Interleaved 2 of 5	I <len></len>	なし	I	I	l <len></len>	l <len></len>	1
CODE 93	なし	なし	L	L	L <len></len>	なし	なし
Discrete 2 of 5	H <len></len>	なし	Н	н	H <len></len>	H <len></len>	2
GS1-128	L <len></len>	なし	Р	Р	P <len></len>	L <len></len>	5
MSI	なし	なし	0	0	O <len></len>	なし	なし
Bookland EAN	F	F	А	A	А	F	なし
Trioptic	なし	なし	なし	なし	なし	なし	なし
CODE 11	なし	なし	なし	なし	なし	なし	なし
ΙΑΤΑ	H <len></len>	なし	Н	н	H <len></len>	H <len></len>	2
CODE 32	なし	なし	なし	なし	なし	なし	なし
GS1 Databar パリ エーション	なし	なし	E	E	なし	なし	なし

7-6 LI4278 プロダクト リファレンス ガイド

RS-232 ホスト タイプ

RS-232 のホストタイプを選択します。

標準 RS-232

ICL RS-232

Wincor-Nixdorf RS-232 Mode A

Wincor-Nixdorf RS-232 Mode B

Olivetti ORS4500

RS-232 ホストタイプ(続き)

Omron

OPOS/JPOS

Fujitsu RS-232

CUTE

注

CUTE ホストでは、「デフォルト設定」を含め、すべてのパラメータのスキャニングが無効になります。誤って CUTE を 選択した場合は、***パラメータ バーコードのスキャンを有効にする (01h) (5-5 ページ)** をスキャンしてからホストを変 更してください。

7-8 LI4278 プロダクト リファレンス ガイド

ボーレート

ボーレートは、1 秒間に転送されるデータのビット数です。リニア イメージャー スキャナーのボーレートがホスト デバ イスのボーレート設定に一致するように設定します。一致しない場合、データがホスト デバイスに転送されなかったり、 正常でない形で転送されたりすることがあります。

CR0078-S クレードルでは 38,400 を超えるボーレートはサポートされていません。これらのバーコードをスキャンする と、ボーレートは 9600 になります。

*ボーレート 9600

ボーレート 19,200

ボーレート 38,400

ボーレート 57,600

ボーレート 115,200

パリティ

パリティ チェック ビットは、各 ASCII コード キャラクタの最も重要なビットです。ホスト デバイスの要件に基づいて、 パリティ タイプを選択します。

- パリティとして「奇数」を選択すると、データに基づいてパリティビットの値が0または1に設定され、奇数個の 1ビットがコードキャラクタに含まれるようになります。
- パリティとして「偶数」を選択すると、データに基づいてパリティビットの値が0または1に設定され、偶数個の 1ビットがコードキャラクタに含まれるようになります。
- パリティビットが不要の場合は「なし」を選択します。

奇数

偶数

*なし

ストップ ビットの選択

転送される各キャラクタの末尾にあるストップ ビットは、1 つのキャラクタの転送終了を表し、受信デバイスがシリアル データ ストリーム内の次のキャラクタを受信できるようにします。選択するストップ ビット数(1 または 2)は、受信端 末が対応しているビット数によって異なります。ストップ ビット数はホスト デバイスの要件に適合するよう設定します。

*1 ストップ ビット

2 ストップ ビット

データ長 (ASCII フォーマット)

このパラメータは、リニア イメージャー スキャナーを、7 ビットまたは 8 ビットの ASCII プロトコルを必要とするデバ イスと接続できるようにするために使用します。

7 ビット

*8 ビット

受信エラーのチェック

受信キャラクタのパリティ、フレーミング、オーバーランをチェックするかどうかを選択します。受信したキャラクタの パリティ値は、上で選択したパリティ パラメータに対照されて検証されます。

* 受信エラーをチェックする (有効)

受信エラーをチェックしない (無効)

ハードウェア ハンドシェイク

データ インタフェースは、ハードウェア ハンドシェイク制御線、Request to Send (RTS)、または Clear to Send (CTS) の有無にかかわらず動作するよう設計された RS-232C ポートで構成されています。

標準の RTS/CTS ハンドシェイクが選択されていない場合、スキャン データは標準の RTS/CTS ハンドシェイクが使用可能 になると転送されます。標準の RTS/CTS ハンドシェイクが選択されている場合、スキャン データは次の順序で転送され ます。

- リニア イメージャー スキャナーは CTS 制御線を読み取り、アクティビティを検出します。CTS がオンになってい る場合、リニア イメージャー スキャナはホストが CTS 制御線をオフにするまで、最大でホスト シリアル レスポン ス タイムアウトの時間待機します。ホスト シリアル レスポンス タイムアウトの時間が経過した後でも CTS 制御 線がまだオンになっている場合、リニア イメージャー スキャナで転送エラー音が鳴り、スキャンされたデータがす べて失われます。
- CTS 制御線がオフになると、リニア イメージャー スキャナは RTS 制御線をオンにし、ホストが CTS をオンにす るまで、最大でホスト シリアル レスポンス タイムアウトの時間待機します。CTS がオンになると、データが転送 されます。ホスト シリアル レスポンス タイムアウトの時間が経過した後でも CTS 制御線がまだオンになっていな い場合、リニア イメージャー スキャナーで転送エラー音が鳴り、データが破棄されます。
- データの転送が完了すると、最後のキャラクタが送信されてから 10 ミリ秒後に RTS がオフになります。
- ホストは CTS をオフにして応答する必要があります。次のデータの転送時に、オフになっている CTS の有無が確認されます。

データの転送中は、CTS 制御線がオンになっている必要があります。キャラクタ間で CTS が 50 ミリ秒を超えてオフに なっている場合、転送は中止され、転送エラー音が鳴り、データは破棄されます。

上記の通信手順を正常に完了できなかった場合、エラー表示が発生します。この場合、データは失われてしまうため、再 度スキャンする必要があります。

ハードウェア ハンドシェイクとソフトウェア ハンドシェイクの両方が有効になっている場合、ハードウェア ハンドシェ イクが優先されます。

ノ 注 DTR 信号は、常時アクティブ状態です。

ハードウェア ハンドシェイク(続き)

- **なし**:ハードウェアハンドシェイクが不要な場合は、下のバーコードをスキャンします。
- 標準 RTS/CTS: 次のバーコードをスキャンすると、標準 RTS/CTS ハードウェア ハンドシェイクが選択されます。
- RTS/CTS オプション 1:RTS/CTS オプション 1 が選択された場合、リニア イメージャー スキャナはデータ転送の 前に RTS をオンにします。CTS の状態は考慮されません。データ転送が完了すると、RTS はオフになります。
- RTS/CTS オプション2:オプション2が選択された場合、RTS は常に High または Low (ユーザーがプログラムした 論理レベル)になります。ただし、データの転送は CTS がオンになってから実行されます。ホスト シリアル レス ポンス タイムアウトの時間内に CTS がオンにならない場合、エラー表示が発生し、データは破棄されます。
- RTS/CTS オプション 3: オプション 3 が選択された場合、CTS の状態にかかわらず、リニア イメージャー スキャナ はデータ転送の前に RTS をオンにします。リニア イメージャー スキャナーは CTS がオンになるのを最大でホス ト シリアル レスポンス タイムアウトの時間まで待機します。この時間内に CTS がオンにならない場合、エラー表 示が発生し、データは破棄されます。データ転送が完了すると、RTS はオフになります。

*なし

標準 RTS/CTS

RTS/CTS オプション1

RTS/CTS オプション2

RTS/CTS オプション3

ソフトウェア ハンドシェイク

このパラメータでは、ハードウェア ハンドシェイクで提供されるものに代わって、あるいはそれに追加して、データ転送のプロセスを制御できます。5種類のオプションが用意されています。

ソフトウェア ハンドシェイクとハードウェア ハンドシェイクの両方が有効になっている場合、ハードウェア ハンドシェ イクが優先されます。

- なし:このオプションを選択すると、データは直ちに転送されます。ホストからの応答は求めません。
- ACK/NAK: このオプションが選択されている場合、データの転送後に、リニア イメージャー スキャナはホストからの ACK または NAK 応答を待ちます。リニア イメージャー スキャナーは NAK を受信すると同じデータを再送信し、ACK または NAK を待ちます。NAK の受信時のデータ送信試行に 3 回失敗すると、エラー表示が発生し、データが破棄されます。

リニア イメージャー スキャナは ACK または NAK の受信を最大でプログラム可能なホスト シリアル レスポンス タイムアウトの時間まで待機します。この時間内に応答が得られない場合、エラーが表示され、データが破棄され ます。タイムアウトが発生した場合は、再試行はされません。

- ENQ: このオプションを選択すると、リニア イメージャー スキャナは、ホストから ENQ キャラクタを受信してか らデータを転送します。ホスト シリアル レスポンス タイムアウトの時間内に EMQ が受信されなかった場合、エ ラー表示が発生し、データが破棄されます。転送エラーが発生しないようにするには、ホストが少なくともホスト シリアル レスポンス タイムアウトごとに ENQ キャラクタを送信する必要があります。
- ACK/NAK with ENQ:前の2つのオプションを組み合わせます。データの再転送時には、ホストから受信した NAK があるため、追加の ENQ は必要ありません。
- XON/XOFF: XOFF キャラクタによりリニア イメージャー スキャナーによる転送がオフになります。このオフ状態 はリニア イメージャー スキャナーが XON キャラクタを受信するまで継続します。XON/XOFF を使用する状況に は2通りあります。
 - 送信するデータがない状態で XOFF を受信する場合。送信するデータが準備されると、XON キャラクタの受信を最大でホスト シリアル レスポンス タイムアウトの時間まで待機します。この時間内に XON が受信されない場合、エラーが表示され、データは破棄されます。
 - 転送中に XOFF を受信する場合。その時点でのバイトを送信した後、データ転送が停止します。XON キャラクタを受信すると、残りのデータメッセージが送信されます。リニア イメージャー スキャナーは XON の受信を最大 30 秒間待機します。

7 - 14 LI4278 プロダクト リファレンス ガイド

ソフトウェア ハンドシェイク(続き)

*なし

ACK/NAK

ENQ

ACK/NAK with ENQ

XON/XOFF

ホスト シリアル レスポンス タイムアウト

ACK、NAK、ENQ、XON、または CTS を待機していて、ここで指定した時間が経過すると、転送エラーが発生していると判断されます。

*最小:2秒

低:2.5 秒

中:5秒

高:7.5 秒

最大:9.9 秒

7 - 16 LI4278 プロダクト リファレンス ガイド

RTS 制御線の状態

このパラメータは、シリアル ホスト RTS 制御線のアイドル状態を設定します。下のバーコードをスキャンして、RTS 制 御線の状態を Low または High に設定します。

*ホスト:Low

ホスト:High

<BEL> キャラクタによるビープ音

ポイント・ツー・ポイント モードのみ

RS-232 シリアル線で <BEL> キャラクタが検出されるとビープ音が鳴ります。<BEL> は、不正な入力などの重大なイベントをユーザーに通知するために出力されます。

🧨 注 このパラメータは、マルチポイント・ツー・ポイント モードではサポートされません。

<BEL> キャラクタによるビープ音 (有効)

*<BEL> キャラクタによるビープ音を鳴らさない (無効) キャラクタ間ディレイ

このパラメータは、キャラクタ転送間に挿入されるキャラクタ間ディレイを指定します。

*最小:0 ミリ秒

低:25 ミリ秒

中:50 ミリ秒

高:75 ミリ秒

最大:99 ミリ秒

Nixdorf のビープ音 /LED オプション

Nixdorf Mode B を選択した場合、バーコードを読み取った後にビープ音が鳴り、LED が点灯します。

* 通常の操作 (読み取り直後のビープ音/LED)

転送後にビープ/LED

CTS パルス後にビープ/LED

不明な文字の無視

不明な文字とは、ホストが認識できない文字です。不明な文字を除いたすべてのバーコードデータを送信するには、「不明な 文字を含むバーコードを送信する」を選択します。このときエラーを示すビープ音は鳴りません。「不明な文字を含むバー コードを送信しない」を選択した場合は、バーコードデータは最初の不明な文字まで送信され、その後エラーを示すビープ 音が鳴ります。

^{*}不明な文字を含むバーコードを送信する

不明な文字を含むパーコードを送信しない

RS-232 の ASCII キャラクタ セット

表 7-4の値は、ASCII キャラクタ データの転送時にプリフィックスまたはサフィックスとして割り当てることができます。

表 7-4 RS-232 の ASCII キャラクタ セット

ASCII 値	Full ASCII Code 39 エンコード キャラクタ	ASCII キャラクタ
1000	%U	NUL
1001	\$A	SOH
1002	\$B	STX
1003	\$C	ETX
1004	\$D	EOT
1005	\$E	ENQ
1006	\$F	ACK
1007	\$G	BELL
1008	\$H	BCKSPC
1009	\$1	HORIZ TAB
1010	\$J	LF/NW LN
1011	\$K	VT
1012	\$L	FF
1013	\$M	CR/ENTER
1014	\$N	SO
1015	\$O	SI
1016	\$P	DLE
1017	\$Q	DC1/XON
1018	\$R	DC2
1019	\$S	DC3/XOFF
1020	\$T	DC4
1021	\$U	NAK
1022	\$V	SYN
1023	\$W	ETB
1024	\$X	CAN
1025	\$Y	EM
1026	\$Z	SUB
1027	%A	ESC

表 7-4	RS-232	の AS	6CII キャ	ィラクタ	セッ	۲	(続き)
-------	--------	------	---------	------	----	---	------

ASCII 値	Full ASCII Code 39 エンコード キャラクタ	ASCII キャラクタ
1028	%В	FS
1029	%C	GS
1030	%D	RS
1031	%Е	US
1032	スペース	スペース
1033	/A	!
1034	/B	"
1035	/C	#
1036	/D	\$
1037	/E	%
1038	/F	&
1039	/G	1
1040	/H	(
1041	Л)
1042	/J	*
1043	/K	+
1044	/L	,
1045	-	-
1046		
1047	/O	1
1048	0	0
1049	1	1
1050	2	2
1051	3	3
1052	4	4
1053	5	5
1054	6	6
1057	7	7
1056	8	8
1057	9	9
1058	/Z	:

表 7-4 RS-232 の ASCII キャラクタ セット (続き)

ASCII 値	Full ASCII Code 39 エンコード キャラクタ	ASCII キャラクタ
1059	%F	. ,
1060	%G	<
1061	%Н	=
1062	%I	>
1063	%J	?
1064	%V	@
1065	A	A
1066	В	В
1067	С	С
1068	D	D
1069	E	E
1070	F	F
1071	G	G
1072	Н	Н
1073	1	1
1074	J	J
1075	К	К
1076	L	L
1077	М	М
1078	N	Ν
1079	0	0
1080	Р	Р
1081	Q	Q
1082	R	R
1083	S	S
1084	Т	Т
1085	U	U
1086	V	V
1087	W	w
1088	Х	X
1089	Υ	Y

表 7-4 RS-232 の ASCII キャラクタ セット (続き)

ASCII 値	Full ASCII Code 39 エンコード キャラクタ	ASCII キャラクタ
1090	Z	Z
1091	%К	[
1092	%L	1
1093	%M]
1094	%N	٨
1095	%O	-
1096	%W	`
1097	+A	а
1098	+B	b
1099	+C	С
1100	+D	d
1101	+E	е
1102	+F	f
1103	+G	g
1104	+H	時
1105	+I	i
1106	+J	j
1107	+К	k
1108	+L	1
1109	+M	m
1110	+N	n
1111	+0	0
1112	+P	р
1113	+Q	q
1114	+R	r
1115	+S	S
1116	+T	t
1117	+U	u
1118	+V	v
1119	+W	w
1120	+X	x

ASCII 値	Full ASCII Code 39 エンコード キャラクタ	ASCII キャラクタ
1121	+Y	у
1122	+Z	Z
1123	%P	{
1124	%Q	
1125	%R	}
1126	%S	~
1127		未定義
7013		ENTER

表 7-4 RS-232 の ASCII キャラクタ セット (続き)

第8章 USB インタフェース

はじめに

この章では、USB ホストと接続するクレードルをプログラミングする方法について説明します。リニア イメージャー ス キャナ クレードルは、USB ホストに直接接続するか、自己給電式 USB ハブに接続します。クレードルを USB ホストに 接続した場合、USB ポートからクレードルに給電され、リニア イメージャー スキャナのバッテリを再充電することがで きます。ただし、この充電は外部電源から充電するより時間がかかります。CR0078-S/CR0008-S クレードルへの給電 (1-8 ページ)を参照してください。

プログラミング バーコード メニュー全体で、デフォルト値をアスタリスク (*) で示しています。


```
*はデフォルトを示す――
```

* 英語 (U.S.) 標準 USB キーボード _____ 機能 / オプション

注 CR0078-S クレードルは、外部電源の代わりに USB ポートから給電することができます。CR0078-P は、外部電源からのみ給電できます。

USB インタフェースの接続

🧨 注 リニア イメージャー スキャナとクレードルのペアリングと無線通信については、第4章、無線通信を参照してください。

ホスト パラメータの設定を有効にするには、リニア イメージャー スキャナをクレードルに接続する必要があります。 リニア イメージャー スキャナをクレードルに接続せずに、ホスト パラメータ バーコードをスキャンすると、長い低 音→長い高音のビープ シーケンスが鳴ります。

図 8-1 USB 接続

クレードルを接続できる USB 対応のホストは、次のとおりです。

- デスクトップ PC およびノートブック
- Apple[™] iMac、G4、iBooks (北米のみ)
- IBM SurePOS 端末
- 複数のキーボードをサポートする Sun、IBM、およびその他のネットワーク コンピュータ

USB 接続のリニア イメージャー スキャナ クレードルをサポートする OS は、次のとおりです。

- Windows 98、2000、ME、XP
- MacOS 8.5 以上
- IBM 4690 OS

リニア イメージャー スキャナ クレードルは、USB ヒューマン インタフェース デバイス (HID) をサポートする他の USB ホストにも接続できます。 USB インタフェースを接続するには、次の手順に従います。

- USB インタフェース ケーブルのモジュラ コネクタを、リニア イメージャー スキャナ クレードル下部のホスト ポートに接続します。詳細については、CR0078-S/CR0008-S シリーズ クレードルの接続 (1-8 ページ) または CR0078-P シリーズ クレードルの接続 (1-9 ページ) を参照してください。
- シリーズAコネクタを USBホストまたはハブに差し込むか、Plus Powerコネクタを IBM SurePOS 端末の利用可能 ポートに差し込みます。
- 該当するバーコードを USB デバイス タイプ (8-5 ページ) から選んでスキャンし、USB ホストのパラメータを選択します。
- Windows 環境に最初にインストールする場合は、ウィザードが起動し、ヒューマンインタフェースデバイス ドライ バを選択またはインストールするよう求められます。Windows が提供するこのドライバをインストールするには、す べての画面で [Next] をクリックし、最後に [Finished] をクリックします。このインストール中にクレードルの電源 が入ります。
- 5. 他のパラメータ オプションを変更するには、この章に掲載された該当するバーコードをスキャンします。

システムに問題が発生した場合は、 トラブルシューティング(3-4 ページ)を参照してください。

USB パラメータのデフォルト

表 8-1 に USB ホスト パラメータのデフォルトを示します。オプションを変更する場合は、本章の (8-5 ページ)以降に掲載されているパラメータ説明セクションで適切なバーコードをスキャンします。

ま すべてのユーザー設定、ホスト、シンボル体系、およびその他のデフォルト設定パラメータについては、付録 A、 標準のデフォルト設定パラメータを参照してください。

表 8-1 USB ホスト パラメータのデフォルト一覧

パラメータ	デフォルト	ページ番号
USB ホスト パラメータ		
USB デバイス タイプ	HID キーボード エミュレーション	8-5
Symbol Native API (SNAPI) ステータス ハンドシェイク	有効	8-6
USB キーボード タイプ (カントリー コード)	*英語 (U.S.) 標準 USB キーボード	8-7
キャラクタ間ディレイ (USB 専用)	ディレイなし	8-9
Caps Lock オーバーライド (USB 専用)	無効	8-9
不明な文字の無視 (USB 専用)	送信	8-10
不明なバーコードを Code 39 に変換 (USB 専用)	変換しない	8-10
キーパッドのエミュレート	無効	8-11
先行ゼロのキーパッドのエミュレート	無効	8-11
クイック キーパッド エミュレーション	無効	8-12
USB FN1 置換	無効	8-12
ファンクション キーのマッピング	無効	8-13
Caps Lock のシミュレート	無効	8-13
大文字/小文字の変換	変換なし	8-14
静的 CDC (USB 専用)	有効	8-14
ビープ音の無視	無効	8-15
バーコード設定の無視	無効	8-15
USB のポーリング間隔	8ミリ秒	8-17

USB ホスト パラメータ

USB デバイス タイプ

希望の USB デバイス タイプを選択します。

- メモ 1. USB デバイス タイプを変更するとき、クレードルは自動的に再起動します。リニア イメージャー スキャナは、接続解除と再接続を示すビープ シーケンスを鳴らします。
 - 2. USB CDC ホストの選択は、スキャナが CR0078-P (プレゼンテーション) クレードルや CR0078-S (標準) クレードルとペアリングされている場合のみサポートされます。

*HID キーボード エミュレーション

IBM テーブル トップ USB

IBM ハンドヘルド USB

USB OPOS ハンドヘルド

簡易 COM ポート エミュレーション

8-6 LI4278 プロダクト リファレンス ガイド

USB デバイス タイプ(続き)

USB CDC ホスト

Symbol Native API (SNAPI) 画像処理インタフェースなし

Symbol Native API (SNAPI) ステータス ハンドシェイク

USB デバイス タイプとして SNAPI インタフェースを選択した後、ステータス ハンドシェイクを有効にするか、無効にするかを選択します。

注 SNAPI には、CR0078-P クレードルが必要です。

*SNAPI ステータス ハンドシェイクを有効にする

SNAPI ステータス ハンドシェイクを無効にする

USB キーボード タイプ(カントリー コード)

キーボード タイプに対応するバーコードをスキャンします。この設定は、USB HID キーボード エミュレーション デバイ スのみに適用されます。

注 USB キーボード タイプを変更すると、リニア イメージャー スキャナは自動的に再起動します。このとき、標準的な 起動を示すビープ シーケンスが鳴ります。

*英語 (U.S.) 標準 USB キーボード

ドイツ語版 Windows

フランス語版 Windows

カナダ フランス語版 Windows 95/98

カナダ フランス語版 Windows 2000/XP

国際フランス語版

8-8 LI4278 プロダクト リファレンス ガイド

USB キーボード タイプ (カントリー コード)(続き)

スペイン語版 Windows

イタリア語版 Windows

スウェーデン語版 Windows

イギリス英語版 Windows

日本語版 Windows (ASCII)

ブラジル ポルトガル語版 Windows

キャラクタ間ディレイ (USB 専用)

このパラメータは、エミュレーションされたキーストローク間でのディレイをミリ秒単位で設定します。ホストが、より 遅いデータの転送を必要とする場合、以下のバーコードをスキャンしてディレイを長くします。

* ディレイなし

中程度のディレイ (20 ミリ秒)

長いディレイ (40 ミリ秒)

Caps Lock オーバーライド(USB 専用)

このオプションは HID キーボード エミュレーション デバイスのみに適用されます。有効になっている場合、Caps Lock キーの状態に関係なく、データの大文字と小文字が保持されます。この設定は、「日本語版 Windows (ASCII)」キーボード タイプで常に有効で、無効にすることはできません。

Caps Lock キーをオーバーライドする (有効)

*CAPS Lock キーをオーバーライドしない (無効)

不明な文字の無視(USB 専用)

このオプションは、HID キーボード エミュレーション デバイスおよび IBM デバイス専用です。不明な文字とは、ホスト が認識できない文字です。「不明な文字を含むバーコードを送信する」を選択している場合、不明な文字を除くすべての バーコード データが送信され、エラーを示すビープ音は鳴りません。「不明な文字を含むバーコードを送信しない」を選 択した場合、バーコード データは最初の不明な文字まで送信され、その後エラーを示すビープ音が鳴ります。

* 不明な文字を含むバーコードを送信する

不明な文字を含むバーコードを送信しない

不明なバーコードを Code 39 に変換 (USB 専用)

このオプションは IBM ハンドヘルド、IBM テーブルトップ、OPOS デバイス専用です。不明なバーコードタイプのデー タを Code 39 に変換するかしないかを設定します。

* 不明バーコードを Code 39 に変換しない

不明バーコードを Code 39 に変換する
キーパッドのエミュレート

有効になっている場合、すべての文字は ASCII シーケンスとして数字キーパッド経由で送信されます。たとえば、ASCII キャラクタの A は「ALT MAKE」、0、6、5、「ALT BREAK」として送信されます。

* キーパッド エミュレーションを無効にする

キーパッド エミュレーションを有効にする

先行ゼロでキーパッを エミュレートする

先行ゼロの ISO 文字として数字キーパッド経由で文字シーケンスを送信するときは、このオプションを有効にします。 たとえば、ASCII A は「ALT MAKE」として送信され、0065は「ALT BREAK」として送信されます。

* 先行ゼロでキーパッド エミュレーションを無効にする

先行ゼロでキーパッド エミュレーションを有効にする

クイック キーパッド エミュレーション

このオプションは、キーパッドのエミュレーションが有効になっている場合に、HID キーパッド エミュレーション デバイスにのみ適用されます。このパラメータにより、ASCII 文字がキーボードにない場合にのみ ASCII シーケンスが送信されるようになり、キーパッド エミュレーションが高速化されます。デフォルト値は**無効**です。

有効

* 無効

USB キーボードの FN1 置換

このオプションは、USB HID キーボード エミュレーション デバイスのみに適用されます。有効にした場合、EAN 128 バーコード内の FN1 キャラクタが、ユーザーが選択したキー カテゴリと値に置換されます (キー カテゴリとキー値の設 定については、**FN1 置換値 (5-21 ページ)**を参照してください)。

FN1 置換を有効にする

* FN1 置換を無効にする

ファンクション キーのマッピング

32 未満の ASCII 値は、通常、制御キー シーケンスとして送信されます (表 8-2 (8-18 ページ)を参照)。このパラメータが 有効になっている場合は、標準的なキーマッピングの代わりに太字のキーを送信します。このパラメータが有効になって いるかどうかに関係なく、太字エントリを持たないテーブル エントリは同じままです。

*ファンクション キーのマッピングを無効にする

ファンクション キーのマッピングを有効にする

Caps Lock のシミュレート

有効にすると、ライナー イメージャー スキャナは、キーボード上の Caps Lock キーを押したときと同様に、バーコード 上の文字を大文字または小文字に変換します。この変換は、キーボードの Caps Lock の状態に関係なく実行されます。

*Caps Lock のシミュレートを無効にする

Caps Lock のシミュレートを有効にする

8 - 14 LI4278 プロダクト リファレンス ガイド

大文字/小文字の変換

すべてのバーコード データを大文字または小文字に変換します。

^{*}変換なし

すべてを大文字に変換する

すべてを小文字に変換する

静的 CDC (USB 専用)

パラメータ番号 670

無効になっている場合、接続されている各デバイスは、別の COM ポート (最初のデバイス = COM1、 2 番目のデバイス = COM2、3 番目のデバイス = COM3、など)を使用します。

有効になっている場合、各デバイスは同じ COM ポートに接続します。

*静的 CDC (USB 専用)を有効にする (1)

静的 CDC (USB 専用)を無効にする (0)

オプションの USB パラメータ

リニア イメージャー スキャナを設定したが、デフォルト値が保存、または変更されていない場合は、システムを再起動 したときに、以下のバーコードをスキャンして USB インタフェースのデフォルト値を上書きします。

デフォルト値を設定した後に、以下のバーコードをスキャンしてから、リニア イメージャー スキャナを設定してください。

ビープ音の無視

ホストは、ビープ音のリクエストをリニア イメージャー スキャナに送信することができます。このパラメータを有効に した場合、このリクエストは接続されたリニア イメージャー スキャナには送信されません。すべての指示は、処理済み のように USB ホストに通知されます。

* 無効

有効

バーコード設定の無視

ホストには、コード タイプを有効/無効にする機能があります。このパラメータを有効にした場合、このリクエストは接続されたリニア イメージャー スキャナには送信されません。すべての指示は、処理済みのように USB ホストに通知されます。

* 無効

有効

USB のポーリング間隔

以下のバーコードをスキャンし、ポーリング間隔を設定します。ポーリング間隔は、スキャナとホスト コンピュータの間 でデータを送信できる速度を決定します。数値が小さいほど、より高速なデータ転送速度を示しています。

注 USB デバイス タイプを変更するとき、クレードルは自動的に再起動します。リニア イメージャー スキャナは、接続 解除と再接続を示すビープ音を鳴らします。

重要 使用するホストマシンが、選択したデータ転送速度で処理できるかを確認してください。

1ミリ秒

2 ミリ秒

4 ミリ秒

USB インタフェース 8-17

USB のポーリング間隔(続き)

5 ミリ秒

6 ミリ秒

7 ミリ秒

9 ミリ秒

USB の ASCII キャラクタ セット

表 8-2 USB の ASCII キャラクタ セット

ASCII 値	Full ASCII Code 39 エンコード キャラクタ	キーストローク
1000	%U	CTRL 2
1001	\$A	CTRL A
1002	\$B	CTRL B
1003	\$C	CTRL C
1004	\$D	CTRL D
1005	\$E	CTRL E
1006	\$F	CTRL F
1007	\$G	CTRL G
1008	\$H	CTRL H/BACKSPACE ¹
1009	\$1	CTRL I/HORIZONTAL TAB ¹
1010	\$J	CTRL J
1011	\$K	CTRL K
1012	\$L	CTRL L
1013	\$M	CTRL M/ENTER ¹
1014	\$N	CTRL N
1015	\$O	CTRL O
1016	\$P	CTRL P
1017	\$Q	CTRL Q
1018	\$R	CTRL R
1019	\$S	CTRL S
1020	\$T	CTRL T
1021	\$U	CTRL U
1022	\$V	CTRL V
1023	\$W	CTRL W
1024	\$X	CTRL X
¹ 太字のキーストロークは、 信されます。それ以外の場合	「ファンクション キーのマッピング 計は、太字でない方のキーストロー	」パラメータが有効な場合のみ送 クが送信されます。

表 8-2 USB の ASCII キャラクタ セット(続き)

ASCII 值	Full ASCII Code 39 エンコード キャラクタ	キーストローク
1025	\$Y	CTRL Y
1026	\$Z	CTRL Z
1027	%A	CTRL [/ ESC¹
1028	%В	CTRL \
1029	%C	CTRL]
1030	%D	CTRL 6
1031	%Е	CTRL -
1032	スペース	スペース
1033	/A	!
1034	/B	u
1035	/C	#
1036	/D	\$
1037	/E	%
1038	/F	&
1039	/G	1
1040	/H	(
1041	/I)
1042	/J	*
1043	/K	+
1044	/L	、
1045	-	-
1046		
1047	/0	1
1048	0	0
1049	1	1
1050	2	2
1051	3	3
1052	4	4
¹ 太字のキーストロークは、 信されます。それ以外の場合	「ファンクション キーのマッピング 計は、太字でない方のキーストロー	」パラメータが有効な場合のみ送 フが送信されます。

表 8-2 USB の ASCII キャラクタ セット (続き)

ASCII 値	Full ASCII Code 39 エンコード キャラクタ	キーストローク
1053	5	5
1054	6	6
1055	7	7
1056	8	8
1057	9	9
1058	/Z	:
1059	%F	· , ,
1060	%G	<
1061	%Н	=
1062	%I	>
1063	%J	?
1064	%V	@
1065	A	A
1066	В	В
1067	С	С
1068	D	D
1069	E	E
1070	F	F
1071	G	G
1072	Н	Н
1073	1	1
1074	J	J
1075	К	К
1076	L	L
1077	М	М
1078	Ν	Ν
1079	0	0
1080	Р	Р
1081	Q	Q

¹太字のキーストロークは、「ファンクション キーのマッピング」パラメータが有効な場合のみ送 信されます。それ以外の場合は、太字でない方のキーストロークが送信されます。

表 8-2 USB の ASCII キャラクタ セット (続き)

ASCII 值	Full ASCII Code 39 エンコード キャラクタ	キーストローク
1082	R	R
1083	S	S
1084	Т	Т
1085	U	U
1086	V	V
1087	W	W
1088	Х	Х
1089	Y	Y
1090	Z	Z
1091	%К	[
1092	%L	1
1093	%M]
1094	%N	٨
1095	%O	-
1096	%W	•
1097	+A	а
1098	+B	b
1099	+C	С
1100	+D	d
1101	+E	e
1102	+F	f
1103	+G	g
1104	+H	h
1105	+	i
1106	+J	j
1107	+K	k
1108	+L	1
1109	+M	m
1110	+N	n

¹ 太字のキーストロークは、「ファンクション キーのマッピング」パラメータが有効な場合のみ送 信されます。それ以外の場合は、太字でない方のキーストロークが送信されます。

ASCII 值	Full ASCII Code 39 エンコード キャラクタ	キーストローク
1111	+0	0
1112	+P	р
1113	+Q	q
1114	+R	r
1115	+S	S
1116	+T	t
1117	+U	u
1118	+V	v
1119	+W	w
1120	+X	x
1121	+Y	У
1122	+Z	Z
1123	%P	{
1124	%Q	
1125	%R	}
1126	%S	~

表 8-2 USB の ASCII キャラクタ セット (続き)

¹太字のキーストロークは、「ファンクション キーのマッピング」パラメータが有効な場合のみ送 信されます。それ以外の場合は、太字でない方のキーストロークが送信されます。

ALT キー	キーストローク
2064	ALT 2
2065	ALT A
2066	ALT B
2067	ALT C
2068	ALT D
2069	ALT E
2070	ALT F
2071	ALT G
2072	ALT H
2073	ALT I
2074	ALT J
2075	ALT K
2076	ALT L
2077	ALT M
2078	ALT N
2079	ALT O
2080	ALT P
2081	ALT Q
2082	ALT R
2083	ALT S
2084	ALT T
2085	ALT U
2086	ALT V
2087	ALT W
2088	ALT X
2089	ALT Y
2090	ALT Z

表 8-3 USB ALT キー キャラクタ セット

表 8-4 USB GUI キー キャラクタ セット

GUI +—	キーストローク
3000	右コントロール キー
3048	GUI 0
3049	GUI 1
3050	GUI 2
3051	GUI 3
3052	GUI 4
3053	GUI 5
3054	GUI 6
3055	GUI 7
3056	GUI 8
3057	GUI 9
3065	GUI A
3066	GUI B
3067	GUI C
3068	GUI D
3069	GUI E
3070	GUI F
3071	GUI G
3072	GUI H
3073	GUI I
3074	GUI J
3075	GUI K
3076	GUI L
3077	GUI M
3078	GUIN
3079	GUI O
3080	GUI P
3081	GUI Q

注:GUI シフト キー - Apple™ iMac キーボードのアップル キーは、スペース パーの隣に あります。Windows ベースのシステムの GUI キーは、左側の ALT キーの左側と、右側の ALT キーの右隣にそれぞれ 1 つずつあります。

表 8-4 USB GUI キー キャラクタ セット(続き)

GUI キー	キーストローク
3082	GUI R
3083	GUI S
3084	GUI T
3085	GUI U
3086	GUI V
3087	GUI W
3088	GUI X
3089	GUI Y
3090	GUI Z
注:GUI シフト キー - Apple™ iMac キーボー	「のアップル キーは、スペース バーの隣に

あります。Windows ペースのシステムの GUI キーは、左側の ALT キーの左側と、右側の ALT キーの右隣にそれぞれ 1 つずつあります。

表 8-5 USB GUI キー キャラクタ セット

F +	キーストローク
5001	F1
5002	F2
5003	F3
5004	F4
5005	F5
5006	F6
5007	F7
5008	F8
5009	F9
5010	F10
5011	F11
5012	F12
5013	F13
5014	F14
5015	F15
5016	F16
5017	F17

表 8-5 USB GUI キー キャラクタ セット (続き)

F +	キーストローク
5018	F18
5019	F19
5020	F20
5021	F21
5022	F22
5023	F23
5024	F24

表 8-6 USB 数字キーパッド キャラクタ セット

数字キーパッド	キーストローク
6042	*
6043	+
6044	未定義
6045	-
6046	
6047	1
6048	0
6049	1
6050	2
6051	3
6052	4
6053	5
6054	6
6055	7
6056	8
6057	9
6058	Enter
6059	Num Lock

拡張キーパッド	キーストローク
7001	Break
7002	Delete
7003	PgUp
7004	End
7005	Pg Dn
7006	Pause
7007	Scroll Lock
7008	Backspace
7009	Tab
7010	Print Screen
7011	Insert
7012	Home
7013	Enter
7014	Escape
7015	上矢印
7016	下矢印
7017	左矢印
7018	右矢印

表 8-7 USB 拡張キーパッド キャラクタ セット

第9章 IBM インタフェース

はじめに

本章では、IBM 468X/469X ホスト コンピュータ インタフェース用にクレードルをプログラミングする方法について説明 します。

プログラミング バーコード メニュー全体で、デフォルト値をアスタリスク (*) で示しています。

* はデフォルトを示す * **不明バーコードを Code 39 に変換しない** ////機能/オプション

9-2 LI4278 プロダクト リファレンス ガイド

IBM 468X/469X ホストへの接続

🧨 注 リニア イメージャー スキャナとクレードルのペアリングと無線通信については、第4章、無線通信を参照してください。

ホスト パラメータの設定を有効にするには、イメージャー スキャナをクレードルに接続する必要があります。 リニア イメージャー スキャナをクレードルに接続せずに、ホスト パラメータ バーコードをスキャンすると、長い低音→長 い高音のビープ シーケンスが鳴ります。

クレードルをホスト インタフェースに直接接続します。

図 9-1 IBM 直接接続

IBM 46XX インタフェースを接続するには、次の手順に従います。

- IBM 46XX インタフェース ケーブルのモジュラ コネクタを、クレードルのホスト ポートに接続します。詳細については、CR0078-S/CR0008-S クレードルへのケーブルの接続 (1-8 ページ) または CR0078-P クレードルへのケーブルの接続 (1-9 ページ) を参照してください。
- 2. IBM 46XX インタフェース ケーブルのもうー端をホストの適切なポートに接続します。通常は、ポート 9 です。
- 3. ポート アドレス (9-4 ページ)に掲載されている適切なバーコードをスキャンして、ポート アドレスを選択します。
- 4. 他のパラメータ オプションを変更するには、この章に掲載された該当するバーコードをスキャンします。
 - 注 必要なインタフェース ケーブルは、設定によって異なります。図 9-1 のイラストに示したコネクタは、あくまでも例
 です。実際には、別のコネクタが使用される場合もありますが、クレードルの接続手順は同じです。

電源を使用している場合、ホスト ケーブルを交換する前に電源を切ってください。そうしないと、クレードルが新し いホストを認識できない場合があります。

設定する必要があるのは、ポート番号だけです。その他のリニア イメージャー スキャナ パラメータは、通常、IBM シ ステムにより制御されています。

IBM パラメータのデフォルト

表 9-1 に、IBM ホスト パラメータのデフォルトー覧を示します。オプションを変更する場合は、本章の (9-4 ページ) 以降の「パラメータの接続」セクションに掲載されている適切なバーコードをスキャンします。

 \checkmark

注 すべてのユーザー設定、ホスト、シンボル体系、およびその他のデフォルト設定パラメータについては、付録 A、 標準のデフォルト設定パラメータを参照してください。

表 9-1 IBM ホスト パラメータのデフォルト一覧

パラメータ	デフォルト	ページ番号
IBM 468X/469X ホスト パラメータ		
ポート アドレス	選択なし	9-4
不明バーコードを Code 39 に変換	無効	9-5
ビープ音の無視	無効	9-5
バーコード設定の無視	無効	9-6

9-4 LI4278 プロダクト リファレンス ガイド

IBM 468X/469X ホスト パラメータ

ポートアドレス

このパラメータは IBM 468X/469X で使用するポートを設定します。

🛛 注 これらのバーコードをスキャンして、リニア イメージャー スキャナ上の RS-485 インタフェースを有効にします。

* 選択なし

ハンドヘルド スキャナ エミュレーション (ポート 9B)¹

非 IBM スキャナ エミュレーション (ポート 5B)

卓上スキャナ エミュレーション (ポート 17)

注

¹ このインタフェースを設定するにはユーザによる選択が必要で、最も一般的な選択肢がこの形式です。

不明バーコードを Code 39 に変換

不明なバーコード タイプのデータを Code 39 に変換するかしないかを設定します。

不明バーコードを Code 39 に変換

* 不明バーコードを Code 39 に変換しない

オプションの IBM パラメータ

リニア イメージャー スキャナを設定したが、設定値が保存、または変更されていない場合は、システムを再起動したときに、以下のバーコードをスキャンして IBM インタフェースのデフォルト値を上書きします。

デフォルト値を設定した後に、以下のバーコードをスキャンして、リニア イメージャー スキャナを設定してください。

ビープ音の無視

ホストは、ビープ音のリクエストをリニア イメージャー スキャナに送信することができます。このパラメータを有効に した場合、このリクエストは接続されたリニア イメージャー スキャナには送信されません。すべての指示は、そこで処 理されるかのように IBM RS485 ホストに通知されます。

* 無効

有効

バーコード設定の無視

ホストには、コード タイプを有効/無効にする機能があります。このパラメータを有効にした場合、このリクエストは接続されたリニア イメージャー スキャナには送信されません。すべての指示は、そこで処理されるかのように IBM RS485 ホストに通知されます。

* 無効

有効

第 10 章 123SCAN2

はじめに

123Scan² は、迅速かつ簡単に Zebra のスキャナのカスタム セットアップが可能な、使いやすい PC ベースのソフトウェア ツールです。

123Scan² は、ウィザード ツールが用意されており、ユーザーは、合理化されたセットアップ プロセスを通じてセット アップを実行できます。設定は設定ファイルに保存されます。設定ファイルは電子メール経由で配布したり、USB ケーブ ル経由で電子的にダウンロードしたり、またはスキャン可能なプログラミング バーコードのシートを生成するために使用 したりすることができます。

また、123Scan² は、スキャナのファームウェアのアップグレード、新しくリリースされた製品のサポートを有効化する ためのオンラインの確認、設定数が非常に多い場合の複数設定をまとめたバーコード リストの生成、大量のスキャナの同 時設定、資産の追跡情報のレポート生成、およびカスタム製品の作成を行うことができます。

123Scan²との通信

Windows XP SP2 および Windows 7 オペレーティング システムを実行しているホスト コンピュータ上で実行する 123Scan² と通信するには、USB ケーブルを使用してホスト コンピュータとスキャナ クレードルを接続します (**USB 接続** (8-2 ページ)を参照)。

123Scan²の要件

- Windows XP SP2 または Windows 7 を実行するホスト コンピュータ
- スキャナ
- クレードル(コードレススキャンのみ)
- USB ケーブル

123Scan²の詳細については、次の URL を確認してください。 http://www.zebra.com/123scan2

スキャナ SDK、他のソフトウェア ツール、およびビデオ

当社のさまざまなソフトウェア ツールのセットを使用して、すべてのスキャナ プログラミングのニーズに対処します。単純にデバイスの使用が必要な場合でも、また画像とデータの読み取りや資産管理を含む完全な機能を備えたアプリケーションの開発が必要な場合でも、これらのツールはあらゆる面で役立ちます。次に挙げるいずれかの無料ツールをダウンロードするには、<u>http://www.zebra.com/software</u>にアクセスします。

- 123Scan² 設定ユーティリティ (この章で説明しています)
- Windows 向けのスキャナ SDK
- ハウツー ビデオ
- 仮想 COM ポート ドライバ
- OPOS ドライバ
- JPOS ドライバ
- スキャナのユーザー マニュアル
- 古いドライバのアーカイブ

第11章シンボル体系

はじめに

本章では、シンボル体系の機能を説明するとともに、機能を選択するためのプログラミング バーコードを掲載していま す。プログラミングの前に、第1章、最初のステップの手順に従ってください。

機能の値を設定するには、1 つのバーコードまたは短いバーコード シーケンスをスキャンします。これら設定は不揮発性 メモリに保存され、リニア イメージャー スキャナの電源を落としても保持されます。

注 多くのコンピュータでは、画面上でバーコードを直接スキャンできます。画面からスキャンする場合、文書の倍率を バーコードが鮮明に見え、バーやスペースが結合していないレベルに設定してください。

電源投入ビープ音が鳴ったら、ホスト タイプを選択します (個々のホスト情報については、各ホストの章を参照)。この 操作は、新しいホストに接続して初めて電源を入れるときにのみ必要です。

すべての機能をデフォルト値に戻すには、**デフォルト設定パラメータ (5-4 ページ)** をスキャンします。プログラミング バーコード メニュー全体で、アスタリスク (*****) はデフォルト値を示しています。

* はデフォルトを示す ------*UPC-A を有効にする ----- 機能/オプション (01h) ______

―― オプションの 16 進値

スキャン シーケンスの例

多くの場合、1 つのバーコードをスキャンすることでパラメータ値が設定されます。たとえば、UPC-A チェック デジットを含まないバーコード データを転送する場合は、UPC-A チェック デジットを転送 (11-14 ページ)の一覧に掲載された 「UPC-A チェック デジット転送禁止」バーコードをスキャンします。短い高音のビープ音が 1 回鳴って LED が緑色に変われば、パラメータの設定は成功です。

また、複数のバーコードをスキャンして設定する「Discrete 2 of 5 の読み取り桁数設定」などのパラメータもあります。 こういったパラメータの設定に関しては、各パラメータの項を参照してください。

スキャン中のエラー

特に指定されていない限り、スキャンシーケンス中のエラーは、正しいパラメータを再スキャンすることで修正できます。

シンボル体系パラメータのデフォルト一覧

表 11-1 にすべてのシンボル体系パラメータのデフォルトを示します。デフォルト値を変更するには、本ガイドの該当する バーコードをスキャンします。スキャンした新しい値が、メモリ内にある標準のデフォルト値に置き換わります。デフォ ルトのパラメータ値を再び呼び出すには、デフォルト設定パラメータ (5-4 ページ) をスキャンします。

ま すべてのユーザー設定、ホスト、およびその他のデフォルト パラメータについては、付録 A、標準のデフォルト設定 パラメータを参照してください。

本ガイドでは、リストされているパラメータ番号は、これらのパラメータの属性番号と同じです。

パラメータ	パラメータ番 号	デフォルト	ページ番号
UPC/EAN			•
UPC-A	1	有効	11-6
UPC-E	2	有効	11-6
UPC-E1	12	無効	11-7
EAN-8/JAN 8	4	有効	11-7
EAN-13/JAN 13	3	有効	11-8
Bookland EAN	83	無効	11-8
UPC/EAN/JAN サプリメンタルの読み取り (2 桁および 5 桁)	16	無視	11-10
ユーザが設定できるサプリメンタル サプリメンタル 1: サプリメンタル 2:	579 580	000(ゼロ)	11-12
UPC/EAN/JAN サプリメンタルの読み取り繰返回数	80	10	11-12
サプリメンタルコード付き UPC/EAN/JAN の AIM コード ID フォーマット	672	結合	11-13
UPC-A チェック デジットを転送	40	転送	11-14
UPC-E チェック デジットを転送	41	転送	11-14
UPC-E1 チェック デジットを転送	42	転送	11-15
UPC-A プリアンブル	34	システム キャ ラクタ	11-16
UPC-E プリアンブル	35	システム キャ ラクタ	11-17
UPC-E1 プリアンブル	36	システム キャ ラクタ	11-18

表11-1 パラメータのデフォルト値

表11-1 パラメータのデフォルト値(続き)

パラメータ	パラメータ番号	デフォルト	ページ番号
UPC-E から UPC-A フォーマットへの変換	37	無効	11-19
UPC-E1 から UPC-A フォーマットへの変換	38	無効	11-19
EAN-8/JAN-8 拡張	39	無効	11-20
Bookland ISBN 形式	576	ISBN-10	11-20
UCC クーポン拡張コード	85	無効	11-21
クーポン レポート	730	新クーポン フォーマット	11-21
ISSN EAN	617	無効	11-22
CODE 128	I	L	<u> </u>
CODE 128	8	有効	11-23
Code 128 の読み取り桁数設定	209、210	任意長	11-24
GS1-128 (旧 UCC/EAN-128)	14	有効	11-25
ISBT 128	84	有効	11-25
ISBT の連結	577	無効	11-26
ISBT テーブルのチェック	578	有効	11-27
ISBT 連結の読み取り繰返回数	223	10	11-27
CODE 39	1		
CODE 39	0	有効	11-28
Trioptic Code 39	13	無効	11-28
Code 39 から Code 32 への切り替え (Italian Pharmacy Code)	86	無効	11-29
Code 32 プリフィックス	231	無効	11-29
Code 39 の読み取り桁数設定	18、19	2 ~ 55	11-30
Code 39 チェック デジットの確認	48	無効	11-31
Code 39 チェック デジットの転送	43	無効	11-31
Code 39 Full ASCII 変換	17	無効	11-32
Code 39 のバッファ	113	無効	11-33
CODE 93	•	1	
CODE 93	9	無効	11-35
Code 93 の読み取り桁数設定	26、27	4 ~ 55	11-35

11 - 4 LI4278 プロダクト リファレンス ガイド

表11-1 パラメータのデフォルト値(続き)

パラメータ	パラメータ番号	デフォルト	ページ番号
CODE 11		1	
CODE 11	10	無効	11-37
Code 11 の読み取り桁数設定	28、29	4 ~ 55	11-37
Code 11 チェック デジットの確認	52	無効	11-39
Code 11 チェック デジットの転送	47	無効	11-40
Interleaved 2 of 5 (ITF)			
Interleaved 2 of 5 (ITF)	6	無効	11-41
Interleaved 2 of 5 の読み取り桁数設定	22、23	14	11-41
Interleaved 2 of 5 チェック デジットの確認	49	無効	11-43
Interleaved 2 of 5 チェック デジットを転送	44	無効	11-43
Interleaved 2 of 5 から EAN 13 への変換	82	無効	11-44
Discrete 2 of 5 (DTF)			
Discrete 2 of 5	5	無効	11-45
Discrete 2 of 5 の読み取り桁数設定	20、21	12	11-45
Codabar (NW - 7)			
Codabar	7	無効	11-47
Codabar の読み取り桁数設定	24、25	5 ~ 55	11-47
CLSI 編集	54	無効	11-49
NOTIS 編集	55	無効	11-49
Codabar の大文字または小文字のスタート/ストップ キャラク タの検出	855	大文字	11-50
MSI			
MSI	11	無効	11-51
MSI の読み取り桁数設定	30、31	4 ~ 55	11-51
MSI チェック デジット	50	1つ	11-53
MSI チェック デジットの転送	46	無効	11-53
MSI チェック デジットのアルゴリズム	51	Mod 10/Mod 10	11-54
Chinese 2 of 5			
Chinese 2 of 5	408	無効	11-55

表11-1 パラメータのデフォルト値(続き)

パラメータ	パラメータ番号	デフォルト	ページ番号
Matrix 2 of 5			
Matrix 2 of 5	618	無効	11-56
Matrix 2 of 5 の読み取り桁数	619、620	14 (1 種類の読 み取り桁数)	11-57
Matrix 2 of 5 チェック デジット	622	無効	11-58
Matrix 2 of 5 チェック デジットを転送	623	転送	11-58
Korean 3 of 5			
Korean 3 of 5	581	無効	11-59
反転 1D			
反転 1D	586	標準	11-60
GS1 DataBar			
GS1 DataBar-14	338	有効	11-61
GS1 DataBar Limited	339	無効	11-61
GS1 DataBar Expanded	340	有効	11-62
GS1 DataBar Limited の正確性レベル	728	レベル 3	11-63
GS1 DataBar を UPC/EAN に変換	397	無効	11-64
読み取り精度レベル			
2 値コードタイプの読み取り精度レベル	78	1	11-66
正確性レベル	77	1	11-67
キャラクタ間ギャップ サイズ	381	通常	11-68

11 - 6 LI4278 プロダクト リファレンス ガイド

UPC/EAN

UPC-Aの有効化/無効化

パラメータ番号1

UPC-A を有効または無効にするには、以下の該当するバーコードをスキャンします。

UPC-A を無効にする (0)

UPC-Eの有効化/無効化

パラメータ番号2

UPC-E を有効または無効にするには、以下の該当するバーコードをスキャンします。

^{*}UPC-E を有効にする (01h)

UPC-E を無効にする (00h)

UPC-E1の有効化/無効化

パラメータ番号12

UPC-E1 はデフォルトでは無効です。

UPC-E1 を有効または無効にするには、以下の該当するバーコードをスキャンします。

建 UPC-E1 は、UCC (Uniform Code Council) 承認のシンボル体系ではありません。

UPC-E1 を有効にする (01h)

^{*}UPC-E1 を無効にする (00h)

EAN-8/JAN-8の有効化/無効化

パラメータ番号4

EAN-8/JAN-8 を有効または無効にするには、以下の該当するバーコードをスキャンします。

^{*}EAN-8/JAN-8 を有効にする (01h)

EAN-8/JAN-8 を無効にする (00h)

EAN-13/JAN-13 の有効化/無効化

パラメータ番号3

EAN-13/JAN-13 を有効または無効にするには、以下の該当するバーコードをスキャンします。

^{*}EAN-13/JAN-13 を有効にする (01h)

EAN-13/JAN-13 を無効にする (00h)

Bookland EAN の有効化/無効化

パラメータ番号83

Bookland EAN を有効または無効にするには、以下の該当するバーコードをスキャンします。

Bookland EAN を有効にする (01h)

 \checkmark

注

Bookland EAN を有効にする場合は、Bookland ISBN 形式 (11-20 ページ) を選択します。また、UPC/EAN/JAN サプ リメンタルの読み取り (11-9 ページ)の、「UPC/EAN サプリメンタルの読み取り」、「UPC/EAN サプリメンタルの自動 認識」、または「978/979 サプリメンタル モードを有効にする」のいずれかも選択します。

UPC/EAN/JAN サプリメンタルの読み取り

パラメータ番号16

サプリメンタルは、特定の形式変換に従って追加されるバーコードです (UPC A+2、UPC E+2、EAN 13+2 など)。次のオ プションから選択できます。

- 「サプリメンタル付き UPC/EAN を無視する」を選択した場合、サプリメンタル シンボル付き UPC/EAN をスキャン すると、UPC/EAN は読み取られますが、サプリメンタル キャラクタは無視されます。
- 「サプリメンタル付き UPC/EAN を読み取る」を選択した場合、サプリメンタル キャラクタ付き UPC/EAN シンボ ルのみが読み取られ、サプリメンタルがないシンボルは無視されます。
- 「サプリメンタル付き UPC/EAN を自動認識する」を選択した場合、サプリメンタル キャラクタ付き UPC/EAN は 直ちに読み取られます。シンボルにサプリメンタルがない場合、リニア イメージャー スキャナはサプリメンタルが ないことを確認するために、UPC/EAN/JAN サプリメンタルの読み取り繰返回数 (11-12 ページ)で設定された回数 だけバーコードを読み取ってから、このデータを転送します。
- 次のサプリメンタル モード オプションのいずれかを選択した場合、リニア イメージャー スキャナは、サプリメン タル キャラクタを含んだプリフィックスで始まる EAN-13 バーコードを直ちに転送します。シンボルにサプリメン タルがない場合、リニア イメージャー スキャナはサプリメンタルがないことを確認するために、UPC/EAN/JAN サ プリメンタルの読み取り繰返回数 (11-12 ページ) で設定された回数だけバーコードを読み取ってから、このデータを 転送します。プリフィックスを含まない UPC/EAN バーコードは直ちに転送されます。
 - 378/379 サプリメンタル モードを有効にする
 - 978/979 サプリメンタル モードを有効にする
- 注 「978/979 サプリメンタル モード」を選択し、Bookland EAN バーコードをスキャンしている場合、Bookland EAN の 有効化/無効化 (11-8 ページ) を参照して Bookland EAN を有効にし、Bookland ISBN 形式 (11-20 ページ) を使用して 形式を選択します。
 - 977 サプリメンタル モードを有効にする
 - 414/419/434/439 サプリメンタル モードを有効にする
 - 491 サプリメンタル モードを有効にする
 - スマートサプリメンタルモードを有効にする 前述したプリフィックスで始まる EAN-13 バーコードに適用 されます。
 - ユーザが設定できるサプリメンタル タイプ1 ユーザが定義した3桁のプリフィックスで始まる EAN-13 バー コードに適用されます。ユーザが設定できるサプリメンタル (11-12 ページ) を使用して3桁のプリフィックスを 設定します。
 - ユーザが設定できるサプリメンタル タイプ1 および2 ユーザが定義した2種類の3桁のプリフィックスの いずれかで始まる EAN-13 バーコードに適用されます。この3桁のプリフィックスは、ユーザが設定できるサプ リメンタル (11-12ページ)を使用して設定します。
 - ユーザが設定できるスマート サプリメンタル プラス1 前述したプリフィックスか、またはユーザが設定できるサプリメンタル (11-12 ページ) を使用してユーザが定義したプリフィックスで始まる EAN-13 バーコードに適用されます。
 - ユーザが設定できるスマート サプリメンタル プラス 1 および 2 前述したプリフィックスか、またはユーザが 設定できるサプリメンタル (11-12 ページ) を使用してユーザが定義した 2 種類のプリフィックスのいずれかで 始まる EAN-13 バーコードに適用されます。
- 注 無効なデータ転送となるリスクを最小限に抑えるため、サプリメンタル キャラクタの読み取りか無視のいずれかを選択します。

11 - 10 LI4278 プロダクト リファレンス ガイド

UPC/EAN/JAN サプリメンタルの読み取り(続き)

サプリメンタルコード付き UPC/EAN/JAN のみを読み取る (01h)

UPC/EAN/JAN サプリメンタルを自動認識する (02h)

378/379 サプリメンタル モードを有効にする (04h)

978/979 サプリメンタル モードを有効にする (05h)

977 サプリメンタル モードを有効にする (07h)
UPC/EAN/JAN サプリメンタルの読み取り(続き)

414/419/434/439 サプリメンタル モードを有効にする (06h)

スマート サプリメンタル モードを有効にする (03h)

ユーザが設定できるサプリメンタル タイプ1 (09h)

ユーザが設定できるサプリメンタル タイプ 1 および 2 (0Ah)

ユーザが設定できるスマート サプリメンタル プラス1 (0Bh)

ユーザが設定できるスマート サプリメンタル プラス 1 および 2 (0Ch)

ユーザが設定できるサプリメンタル

サプリメンタル 1: パラメータ番号 579 サプリメンタル 2: パラメータ番号 580

UPC/EAN/JAN サプリメンタルの読み取り(11-9 ページ)に記載された、ユーザーが設定できるサプリメンタルオプション のいずれかを選択した場合、3 桁のプリフィックスを設定するには、「ユーザーが設定できるサプリメンタル 1」を選択しま す。次に、(D-1 ページ)から始まる数字バーコードを使用して3桁を選択します。別の3桁のプリフィックスを設定するに は、「ユーザーが設定できるサプリメンタル2」を選択します。次に、(D-1 ページ)から始まる数字バーコードを使用して 3桁を選択します。デフォルトは000(ゼロ)です。

ユーザーが設定できるサプリメンタル1

ユーザーが設定できるサプリメンタル2

UPC/EAN/JAN サプリメンタルの読み取り繰返回数

パラメータ番号80

「UPC/EAN/JAN サプリメンタルを自動認識する」を選択した場合、転送の前に、サプリメンタルなしのシンボルを指定 した回数で繰り返し読み取ります。範囲は2~30回です。サプリメンタル付きとなしのタイプが混在している UPC/EAN/JAN シンボルを読み取る際には、5回以上の値を設定するようお勧めします。デフォルトは10です。

以下のバーコードをスキャンし、読み取り繰返回数を設定します。次に、付録D、数値バーコードに記載された2つの数 字バーコードをスキャンします。1桁の数字には、先頭にゼロを入力します。操作を間違ったときや、選択した設定を変 更する場合は、キャンセル (D-3 ページ) をスキャンします。

UPC/EAN/JAN サプリメンタルの読み取り繰返回数

サプリメンタルコード付き UPC/EAN/JAN の AIM ID フォーマット

パラメータ番号 672

AIM コード ID キャラクタを付加したサプリメンタルコード付き UPC/EAN/JAN バーコードを転送するときの出力フォーマットを選択します。AIM コード ID キャラクタを付加するには、コード ID キャラクタの転送 (5-18 ページ)で設定します。

• 分離 - サプリメンタルコード付き UPC/EAN を分離された AIM ID で 1 回で転送します。例:

]E<0 または 4>< データ >]E<1 または 2>[サプリメンタル データ]

- 結合 サプリメンタルコード付き UPC/EAN をサプリメンタルコード付き AIM ID で 1 回で転送します。例: IE3< データ + サプリメンタル データ>
- 分離転送 サプリメンタルコード付き UPC/EAN を分離された AIM ID で個別に転送します。例:

]E<0 または 4>< データ >]E<1 または 2>[サプリメンタル データ]

分離 (00h)

^{*}結合 (01h)

分離転送 (02h)

UPC-A チェック デジットを転送

パラメータ番号 40

チェック デジットとは、シンボルの最後のキャラクタで、データの整合性を検証するために使用されます。以下の該当す るバーコードをスキャンし、バーコード データを UPC-A チェック デジット付きまたはなしで転送します。データの整合 性の保証を常に確認します。

^{*}UPC-A チェック デジットを転送 (01h)

UPC-A チェック デジットを転送しない (00h)

UPC-E チェック デジットを転送

パラメータ番号 41

チェック デジットとは、シンボルの最後のキャラクタで、データの整合性を検証するために使用されます。以下の該当す るバーコードをスキャンし、バーコード データを UPC-E チェック デジット付きまたはなしで転送します。データの整合 性の保証を常に確認します。

^{*}UPC-E チェック デジットを転送 (01h)

UPC-E チェック デジットを転送しない (00h)

UPC-E1 チェック デジットを転送

パラメータ番号 42

チェック デジットとは、シンボルの最後のキャラクタで、データの整合性を検証するために使用されます。以下の該当す るバーコードをスキャンし、バーコード データを UPC-E1 チェック デジット付きまたはなしで転送します。データの整 合性の保証を常に確認します。

^{*}UPC-E1 チェック デジットを転送 (01h)

UPC-E1 チェック デジットを転送しない (00h)

UPC-A プリアンブル

パラメータ番号 34

プリアンブル キャラクタは、UPC シンボルの一部であり、カントリー コード及びシステム キャラクタを含んでいます。 UPC-A プリアンブルをホスト デバイスに転送するオプションは、システム キャラクタのみを転送、システム キャラクタ とカントリー コード (米国は「0」)を転送、プリアンブルを転送しない、の 3 つです。ホスト システムに一致する適切 なオプションを選択します。

プリアンブルなし (< データ >) (00h)

* システム キャラクタ(< システム キャラクタ >< データ >) (01h)

システム キャラクタおよびカントリー コード (<カントリー コード> <システム キャラクタ> <データ>) (02h) UPC-E プリアンブル

パラメータ番号 35

プリアンブル キャラクタは、UPC シンボルの一部であり、カントリー コード及びシステム キャラクタを含んでいます。 UPC-E プリアンブルをホスト デバイスに転送するオプションは、システム キャラクタのみを転送、システム キャラクタ とカントリー コード (米国は「0」)を転送、プリアンブルを転送しない、の 3 つです。ホスト システムに一致する適切 なオプションを選択します。

プリアンブルなし (< データ >) (00h)

* システム キャラクタ(< システム キャラクタ >< データ >) (01h)

システム キャラクタおよびカントリー コード (<カントリー コード> <システム キャラクタ> <データ>) (02h)

UPC-E1 プリアンブル

パラメータ番号 36

プリアンブル キャラクタは、UPC シンボルの一部であり、カントリー コード及びシステム キャラクタを含んでいます。 UPC-E1 プリアンブルをホスト デバイスに転送するオプションは、システム キャラクタのみを転送、システム キャラク タとカントリー コード (米国は「0」)を転送、プリアンブルを転送しない、の 3 つです。ホスト システムに一致する適 切なオプションを選択します。

プリアンブルなし (< データ >) (00h)

* システム キャラクタ(< システム キャラクタ >< データ >) (01h)

システム キャラクタおよびカントリー コード (<カントリー コード> <システム キャラクタ> <データ>) (02h)

UPC-EをUPC-Aに変換する

パラメータ番号 37

転送前に UPC-E (ゼロ抑制) 読み取りデータを UPC-A 形式に変換するには、このオプションを有効にします。変換後、 データは UPC-A 形式に従い、UPC-A プログラミング 選択 (プリアンブル、チェック デジットなど) の影響を受けます。 UPC-E 読み取りデータを UPC-E データとして変換なしで転送するには、このパラメータを無効にします。

UPC-E を UPC-A に変換する (有効) (01h)

^{*}UPC-E を UPC-A に変換しない (無効) (00h)

UPC-E1をUPC-Aに変換する

パラメータ番号38

転送前に UPC-E1 読み取りデータを UPC-A 形式に変換するには、このパラメータを有効にします。変換後、データは UPC-A 形式に従い、UPC-A プログラミング 選択 (プリアンブル、チェック デジットなど)の影響を受けます。 UPC-E1 読み取りデータを UPC-E1 データとして変換なしで転送するには、このパラメータを無効にします。

UPC-E1 を UPC-A に変換する (有効) (01h)

^{*}UPC-E1 を UPC-A に変換しない (無効) (00h)

EAN-8/JAN-8 拡張

パラメータ番号 39

読み取った EAN-8 シンボルが形式で EAN-13 シンボルと互換性を持つように、先頭にゼロを 5 つ追加するには、このパ ラメータを有効にします。

EAN-8 シンボルをそのまま転送するには、このパラメータを無効にします。

EAN/JAN ゼロ拡張を有効にする (01h)

*EAN/JAN ゼロ拡張を無効にする (00h)

Bookland ISBN 形式

パラメータ番号 576

Bookland EAN の有効化/無効化 (11-8 ページ) を使用して Bookland EAN を有効にした場合、次のいずれかの形式の Bookland データを選択します。

- Bookland ISBN-10 下位互換性用の特殊な Bookland チェック デジットを備えた従来の 10 桁形式で、978 で始まる Bookland データが認識されます。このモードでは、979 で始まるデータは Bookland とは見なされません。
- Bookland ISBN-13 2007 ISBN-13 プロトコル対応の 13 桁形式で、978 または 979 で始まる Bookland データが EAN-13 と認識されます。

*Bookland ISBN-10 (00h)

Bookland ISBN-13 (01h)

注 Bookland EAN を適切に使用するには、まず Bookland EAN の有効化/無効化 (11-8 ページ)を使用して、Bookland EAN を有効にします。次に、UPC/EAN/JAN サプリメンタルの読み取り (11-9 ページ) で「サプリメンタル付き UPC/EAN/JAN のみ読み取る」、「サプリメンタル付き UPC/EAN/JAN を自動認識する」、または「978/979 サプリメン タル モードを有効にする」のいずれかを選択します。

UCC クーポン拡張コード

パラメータ番号85

「5」デジットで始まる UPC-A バーコード、「99」デジットで始まる EAN/JAN-13 バーコード、UPC-A/GS1-128 クーポン コードを読み取るには、このパラメータを有効にします。 すべてのタイプのクーポン コードをスキャンするには、UPCA、 EAN-13、GS1-128 を有効にする必要があります。

UCC クーポン拡張コードを有効にする (01h)

*UCC クーポン拡張コードを無効にする (00h)

注 クーポン コードの GS1-128 (右半分)の自動識別を制御する場合、UPC/EAN/JAN サプリメンタルの読み取り繰返回
数 (11-12 ページ)を参照してください。

クーポン レポート

パラメータ番号 730

オプションを選択して、サポートするクーポン フォーマットのタイプを決定します。

- UPC-A/GS1-128 と EAN-13/GS1-128 のクーポンコードを読み取るには、「旧クーポンフォーマット」を選択します。
- UPC-A/GS1-DataBar と EAN-13/GS1-DataBar のクーポン コードを読み取るには、「新クーポン フォーマット」を 選択します。
- 「自動識別クーポンフォーマット」を選択すると、新旧両方のクーポンコードを読み取ることができます。

(00h)

^{*} 新クーポン フォーマット (01h)

自動識別クーポン フォーマット (02h)

ISSN EAN

パラメータ番号 617

ISSN EAN を有効または無効にするには、以下の該当するバーコードをスキャンします。

ISSN EAN を有効にする (01h)

^{*} ISSN EAN を無効にする (00h)

CODE 128

Code 128 を有効/無効にする

パラメータ番号8

Code 128 を有効または無効にするには、以下の適切なバーコードをスキャンします。

*Code 128 を有効にする (01h)

Code 128 を無効にする (00h)

Code 128 の読み取り桁数を設定する

パラメータ番号 209、210

コードの読み取り桁数は、そのコードが含むチェック デジットを含んだ、キャラクタ数 (つまり、可読文字)です。Code 128 の読み取り桁数を、任意長、1 または 2 種類の読み取り桁数、または指定範囲内の読み取り桁数に設定します。

注 異なるバーコード タイプの読み取り桁数を設定するとき、1 桁の数字の先頭にはゼロを入力します。

- 1種類の読み取り桁数 読み取り桁数が1種類の Code 128 シンボルだけを読み取ります。読み取り桁数は、付録 D、 数値バーコードから選択します。たとえば、14 文字の Code 128 シンボルだけを読み取るには、「Code 128 - 1種 類の読み取り桁数」を選択し、次に、1、4 をスキャンします。操作を間違ったときや、選択した設定を変更する 場合は、キャンセル (D-3 ページ) をスキャンします。
- 2 種類の読み取り桁数 選択した 2 種類の読み取り桁数のいずれかを含む Code 128 シンボルだけを読み取ります。読み取り桁数は、付録 D、数値バーコードから選択します。たとえば、2 文字または 14 文字の Code 128 シンボルだけを読み取るには、「Code 128 2 種類の 読み取り桁数」を選択し、0、2、1、4 をスキャンします。操作を間違ったときや、選択した設定を変更する場合は、キャンセル (D-3 ページ) をスキャンします。
- 指定範囲内 特定の読み取り範囲を持つ Code 128 を読み取ります。読み取り桁数は、付録 D、数値バーコードから選択します。たとえば、4 ~ 12 桁の範囲を含む Code 128 シンボルを読み取る場合は、「Code 128 指定範囲内」を選択し、次に、0、4、1、2 をスキャンします。指定する数字が1桁の場合は、最初に必ずゼロをスキャンしてください。操作を間違ったときや、選択した設定を変更する場合は、キャンセル (D-3 ページ) をスキャンします。
- 任意長 任意の文字数の Code 128 シンボルを読み取ります。

11 - 24 LI4278 プロダクト リファレンス ガイド

Code 128 の読み取り桁数を設定する(続き)

Code 128 - 1 種類の読み取り桁数

Code 128 - 2 種類の読み取り桁数

Code 128 - 指定範囲内

^{*}Code 128 - 任意の 読み取り桁数

GS1-128(以前の UCC/EAN-128)を有効/無効にする

パラメータ番号14

GS1-128 を有効または無効にするには、以下の適切なバーコードをスキャンします。

^{*}GS1-128 を有効にする (01h)

GS1-128 を無効にする (00h)

ISBT 128 を有効/無効にする

パラメータ番号84

ISBT 128 は血液バンク業界で使用される Code 128 の一種です。ISBT 128 を有効または無効にするには、以下のバーコードをスキャンします。必要に応じて、ホストは ISBT データを連結する必要があります。

* ISBT 128 を有効にする (01h)

ISBT 128 を無効にする (00h)

ISBT の連結

パラメータ番号 577

ISBT コード タイプのペアの連結のためのオプションを選択します。

- 「ISBT の連結を無効にする」を選択した場合、検出された ISBT コードは連結されません。
- 「ISBT の連結を有効にする」を選択した場合、ISBT コードを読み取り、連結するには、ISBT コードが2つ以上 必要です。単一の ISBT シンボルを読み取ることはできません。
- 「ISBT の連結を自動識別する」を選択すると、ISBT コードのペアがただちに読み取られ、連結されます。ISBT シンボルが1つしかない場合、リニアイメージャー スキャナは、ISBT 連結の読み取り繰返回数 (11-27 ページ)の手順で設定した回数分シンボルを読み取ってから、そのデータを転送して、ほかに ISBT シンボルがないことを確認します。

^{*}ISBT の連結を無効にする (00h)

ISBT の連結を有効にする (01h)

ISBT の連結を自動識別する (02h)

ISBT テーブルのチェック

パラメータ番号 578

ISBT の仕様には、一般的にペアで使用される ISBT バーコードのいくつかのタイプがリストされたテーブルが含まれてい ます。「ISBT の連結」で「有効」に設定した場合は、「ISBT テーブルのチェック」を有効にして、このテーブル内にある ペアのみを連結します。ISBT コードの他のタイプは連結されません。

*ISBT テーブルのチェックを有効にする (01h)

ISBT テーブルのチェックを無効にする (00h)

ISBT 連結の読み取り繰返回数

パラメータ番号 223

「ISBT の連結」で「自動識別」を設定した場合は、このパラメータを使用して、ISBT の読み取り回数を設定します。この回数に達すると、ほかにシンボルが存在しないと判断されます。

この回数を設定するには、以下のバーコードをスキャンし、付録 D、数値バーコードから 2 つの数字 (2 ~ 20) をスキャンし ます。1 桁の数字には、先頭にゼロを入力します。操作を間違ったときや、選択した設定を変更する場合は、キャンセル (D-3 ページ) をスキャンします。デフォルトは 10 です。

11 - 28 LI4278 プロダクトリファレンス ガイド

CODE 39

Code 39 を有効/無効にする

パラメータ番号0

Code 39 を有効または無効にするには、以下の適切なバーコードをスキャンします。

Code 39 を有効にする (01h)

Code 39 を無効にする (00h)

Trioptic Code 39 を有効/無効にする

パラメータ番号 13

Trioptic Code 39 とは、Code 39 のバリエーションで、コンピュータのテープ カートリッジでのマーキングに使用されま す。Trioptic Code 39 シンボルには、常に 6 文字が含まれます。Trioptic Code 39 を有効または無効にするには、以下の適 切なバーコードをスキャンします。

Trioptic Code 39 を有効にする (01h)

^{*}Trioptic Code 39 を無効にする (00h)

注

Trioptic Code 39 と Code 39 Full ASCII を同時に有効にすることはできません。

Code 39 を Code 32 に変換

パラメータ番号86

Code 32 はイタリアの製薬業界で使用される Code 39 のバリエーションです。Code 39 を Code 32 に変換するかしない かを設定するには、下記の適切なバーコードをスキャンします。

注

このパラメータを設定するには、Code 39 を有効にする必要があります。

Code 39 から Code 32 への変換を有効にする (01h)

^{*}Code 39 から Code 32 への変換を無効にする (00h)

Code 32 プリフィックス

パラメータ番号 231

プリフィックス文字「A」をすべての Code 32 バーコードに追加するかしないかを設定するには、下記の適切なバーコー ドをスキャンします。

Code 32 プリフィックスを有効にする (01h)

^{*}Code 32 プリフィックスを無効にする (00h)

Code 39の読み取り桁数を設定する

パラメータ番号18、19

コードの読み取り桁数は、そのコードが含むチェック デジットを含んだ、キャラクタ数(つまり、可読文字)です。Code 39 の読み取り桁数を、任意長、1 または 2 種類の読み取り桁数、または指定範囲内の読み取り桁数に設定します。Code 39 Full ASCII が有効な場合、推奨するオプションは「**指定範囲内**」または「**任意長**」です。デフォルトは 2 ~ 55 です。

注 異なるバーコード タイプの読み取り桁数を設定するとき、1桁の数字の先頭にはゼロを入力します。

- 1種類の読み取り桁数 読み取り桁数が1種類の Code 39 シンボルだけを読み取ります。読み取り桁数は、付録 D、 数値バーコードから選択します。たとえば、14 文字の Code 39 シンボルだけを読み取るには、「Code 39 - 1 種類の読み取り桁数」を選択し、次に、1、4 をスキャンします。操作を間違ったときや、選択した設定を変更する場合は、キャンセル (D-3 ページ) をスキャンします。
- 2 種類の読み取り桁数 選択した 2 種類の読み取り桁数のいずれかを含む Code 39 シンボルだけを読み取ります。読み取り桁数は、付録 D、数値バーコードから選択します。たとえば、2 文字または 14 文字の Code 39 シンボルだけを読み取るには、「2 種類の Code 39 読み取り桁数」を選択し、0、2、1、4 をスキャンします。操作を間違ったときや、選択した設定を変更する場合は、キャンセル (D-3 ページ) をスキャンします。
- 指定範囲内 特定の読み取り範囲を持つ Code 39 を読み取ります。読み取り桁数は、付録 D、数値バーコードから選択します。たとえば、4 ~ 12 桁の範囲を含む Code 39 シンボルを読み取る場合は、「Code 39 指定範囲内」を選択し、次に、0、4、1、2 をスキャンします。指定する数字が1桁の場合は、最初に必ずゼロをスキャンしてください。操作を間違ったときや、選択した設定を変更する場合は、キャンセル(D-3 ページ)をスキャンします。
- 任意長 任意の文字数の Code 39 シンボルを読み取ります。

Code 39 - 1 種類の読み取り桁数

Code 39 - 2 種類の読み取り桁数

Code 39 - 指定範囲内

Code 39 - 任意長

Code 39 チェック デジットの確認

パラメータ番号 48

すべての Code 39 シンボルの整合性を確認し、データが指定したチェック デジット アルゴリズムに準拠していることを 検証するには、この機能を有効にします。Modulo 43 チェック デジットを含む Code 39 シンボルのみが読み取られます。 Code 39 シンボルに Modulo 43 チェック デジットが含まれている場合は、この機能を有効にします。

Code 39 チェック デジットを有効にする (01h)

*Code 39 チェック デジットを無効にする (00h)

Code 39 チェック デジットの転送

パラメータ番号 43

以下のバーコードをスキャンし、Code 39 データをチェック デジット付きまたはなしで転送します。

Code 39 チェック デジットを転送する (有効) (01h)

*Code 39 チェック デジットを転送しない (無効) (00h)

注

このパラメータの動作を有効にするには、「Code 39 チェック デジットの確認」を有効にする必要があります。

Code 39 Full ASCII 変換

パラメータ番号17

Code 39 Full ASCII とは、Code 39 のバリエーションで、キャラクタをペアにして Full ASCII キャラクタ セットを読み取 ります。Code 39 Full ASCII を有効または無効にするには、以下の適切なバーコードをスキャンします。

Code 39 Full ASCII を有効にする (01h)

^{*}Code 39 Full ASCII を無効にする (00h)

 \checkmark

注

Trioptic Code 39 と Code 39 Full ASCII を同時に有効にすることはできません。

Code 39 Full ASCII と Full ASCII の対応付けはホストによって異なります。そのため、該当するインタフェースの ASCII キャラクタ セット一覧で説明します。RS-232 の ASCII キャラクタ セット (7-19 ページ) または USB の ASCII キャラクタ セット (8-18 ページ) を参照してください。

Code 39 バッファリング - スキャンおよび保存

パラメータ番号113

この機能を使用すると、リニア イメージャー スキャナが複数の Code 39 シンボルからデータを収集できるようになります。

スキャンおよび保存オプション (Code 39 のバッファ)を選択すると、先行スペースを最初の文字に持つすべての Code 39 シンボルを、後続の転送用に一時的にバッファします。先行スペースはバッファされません。

先行スペースのない Code 39 シンボルを読み取ると、すべてのバッファされたデータが先入れ先出しフォーマットで順に 送信され、また「トリガとなる」シンボルも送信されます。詳細については、以降のページを参照してください。

すべての読み取られた Code 39 シンボルをバッファに保存せずに直ちに送信するには、「**Code 39 をバッファしない**」を選 択します。

Code 39 バッファリング - スキャンおよび保存(続き)

この機能は Code 39 のみに影響します。「Code 39 をバッファする」を選択した場合、Code 39 シンボル体系のみを読み取るようにリニア イメージャー スキャナを設定することをお勧めします。

Code 39 をバッファする (有効) (01h)

^{*} Code 39 をパッファしない (無効) (00h)

転送バッファにデータがある間は、「**Code 39 をバッファしない**」を選択できません。バッファには 200 バイトの情報を 保持できます。

転送バッファ内にデータがある状態で Code 39 のバッファリングを無効にするには、最初にバッファ転送を強制的に行う か (**バッファの転送 (11-34 ページ)**を参照)、バッファをクリアします。

データのバッファ

データをバッファするには、Code 39 バッファリングを有効にして、スタート パターンの直後にスペースがある Code 39 シンボルをスキャンします。

- データが転送バッファを超過しない限り、正しく読み取れてバッファされた場合は、リニア イメージャー スキャナが低音→高音のビープ音を鳴らします。(超過状況については、転送バッファの超過(11-34 ページ)を参照してください)。
- リニア イメージャー スキャナは、先行スペース以外の読み取られたデータを転送バッファに追加します。
- 転送は行われません。

転送バッファのクリア

転送バッファをクリアするには、下記の「**バッファのクリア**」バーコードをスキャンします。このバーコードにはスター ト キャラクタ、ダッシュ (-)、およびストップ キャラクタのみが含まれています。

- リニア イメージャー スキャナが短い高音→低音→高音のビープ音を鳴らします。
- リニア イメージャー スキャナによって転送バッファが消去されます。
- 転送は行われません。

バッファのクリア

注 「バッファのクリア」にはダッシュ文字 (-) のみが含まれています。このコマンドをスキャンするには、Code 39 の読み取り桁数に1桁が含まれるよう設定してください。

11 - 34 LI4278 プロダクト リファレンス ガイド

バッファの転送

Code 39 バッファを転送するには、2 種類の方法があります。

- 1. 下記の「**バッファの転送**」バーコードをスキャンします。このバーコードにはスタート キャラクタ、プラス (+)、お よびストップ キャラクタが含まれています。
- 2. リニア イメージャー スキャナがバッファの転送およびクリアを実行します。
 - リニア イメージャー スキャナが低音→高音のビープ音を鳴らします。

バッファの転送

- 3. スペース以外の先頭キャラクタを持つ Code 39 バーコードをスキャンします。
 - リニアイメージャースキャナによって新しい読み取りデータがバッファされたデータに付加されます。
 - リニア イメージャー スキャナがバッファの転送およびクリアを実行します。
 - リニア イメージャー スキャナが低音→高音のビープ音を鳴らしてバッファが転送されたことを知らせます。
 - リニア イメージャー スキャナがバッファの転送およびクリアを実行します。

注
「バッファの転送」には、プラス記号 (+) のみが含まれています。このコマンドをスキャンするには、Code 39 の読み
取り桁数に 1 桁が含まれるよう設定してください。

転送バッファの超過

Code 39 バッファは 200 文字を保持できます。シンボルが転送バッファを超過した場合、次のようになります。

- リニア イメージャー スキャナは長い高音 3 回を鳴らしてシンボルが拒否されたことを示します。
- 転送は行われません。バッファ内のデータには影響がありません。

空のバッファの転送の試行

「バッファの転送」シンボルをスキャンし、Code 39 バッファが空の場合、次のようになります。

- 短い低音→高音→低音のビープ音が鳴り、バッファが空であることが示されます。
- 転送は行われません。
- バッファは空のままです。

CODE 93

Code 93 を有効/無効にする

パラメータ番号9

Code 93 を有効または無効にするには、以下の適切なバーコードをスキャンします。

Code 93 を有効にする (01h)

^{*}Code 93 を無効にする (00h)

Code 93 の読み取り桁数を設定する

パラメータ番号 26、27

コードの読み取り桁数は、そのコードが含むチェック デジットを含んだ、キャラクタ数(つまり、可読文字)です。Code 93 の読み取り桁数を、任意長、1 または 2 種類の読み取り桁数、または指定範囲内の読み取り桁数に設定します。デフォ ルトは 4 ~ 55 です。

- 1種類の読み取り桁数: 読み取り桁数が1種類の Code 93 シンボルだけを読み取ります。読み取り桁数は、付録 D、 数値パーコードから選択します。たとえば、14 文字の Code 93 シンボルだけを読み取るには、「Code 93 - 1 種類の読み取り桁数」を選択し、次に、1、4 をスキャンします。操作を間違ったときや、選択した設定を変更する場合は、キャンセル (D-3 ページ) をスキャンします。
- 2 種類の読み取り桁数 選択した 2 種類の読み取り桁数のいずれかを含む Code 93 シンボルだけを読み取ります。読み取り桁数は、付録 D、数値バーコードから選択します。たとえば、2 文字または 14 文字の Code 93 シンボルだけを読み取るには、「Code 93 2 種類の読み取り桁数」を選択し、0、2、1、4 をスキャンします。操作を間違ったときや、選択した設定を変更する場合は、キャンセル (D-3 ページ) をスキャンします。
- 指定範囲内 特定の読み取り範囲を持つ Code 93 を読み取ります。読み取り桁数は、付録 D、数値バーコード から選択します。たとえば、4 ~ 12 桁の範囲を含む Code 93 シンボルを読み取る場合は、「Code 93 指定範囲内」を選択し、次に、0、4、1、2 をスキャンします。指定する数字が1桁の場合は、最初に必ずゼロをスキャンしてください。操作を間違ったときや、選択した設定を変更する場合は、キャンセル(D-3 ページ)をスキャンします。
- 任意長 任意の文字数の Code 93 シンボルを読み取ります。

11 - 36 LI4278 プロダクト リファレンス ガイド

Code 93 の読み取り桁数を設定する(続き)

Code 93 - 1 種類の読み取り桁数

Code 93 - 2 種類の読み取り桁数

Code 93 - 指定範囲内

Code 93 - 任意長

CODE 11

Code 11

パラメータ番号10

Code 11 を有効または無効にするには、以下の適切なバーコードをスキャンします。

Code 11 を有効にする (01h)

^{*}Code 11 を無効にする (00h)

Code 11 の読み取り桁数を設定する

パラメータ番号28、29

コードの読み取り桁数は、そのコードが含むチェック デジットを含んだ、キャラクタ数 (つまり、可読文字)です。Code 11 の読み取り桁数を、任意長、1 または 2 種類の読み取り桁数、または指定範囲内の読み取り桁数に設定します。デフォ ルトは 4 ~ 55 です。

- 1種類の読み取り桁数 読み取り桁数が1種類の Code 11 シンボルだけを読み取ります。読み取り桁数は、付録 D、 数値パーコードから選択します。たとえば、14 文字の Code 11 シンボルだけを読み取るには、「Code 11 - 1 種類 の読み取り桁数」を選択し、次に、1、4 をスキャンします。操作を間違ったときや、選択した設定を変更する場 合は、キャンセル (D-3 ページ) をスキャンします。
- 2 種類の読み取り桁数 選択した 2 種類の読み取り桁数のいずれかを含む Code 11 シンボルだけを読み取ります。読み取り桁数は、付録 D、数値バーコードから選択します。たとえば、2 文字または 14 文字の Code 11 シンボルだけを読み取るには、「Code 11 2 種類の読み取り桁数」を選択し、0、2、1、4 をスキャンします。操作を間違ったときや、選択した設定を変更する場合は、キャンセル (D-3 ページ) をスキャンします。
- 指定範囲内 特定の読み取り範囲を持つ Code 11 を読み取ります。読み取り桁数は、付録 D、数値バーコードから選択します。たとえば、4 ~ 12 桁の範囲を含む Code 11 シンボルを読み取る場合は、「Code 11 指定範囲内」を選択し、次に、0、4、1、2 をスキャンします。指定する数字が1桁の場合は、最初に必ずゼロをスキャンしてください。操作を間違ったときや、選択した設定を変更する場合は、キャンセル(D-3 ページ)をスキャンします。
- 任意長 任意の文字数の Code 11 シンボルを読み取ります。

11 - 38 LI4278 プロダクト リファレンス ガイド

Code 11 の読み取り桁数を設定する(続き)

Code 11 - 1 種類の読み取り桁数

Code 11 - 2 種類の読み取り桁数

Code 11 - 指定範囲内

Code 11 - 任意長

Code 11 チェック デジットの確認

パラメータ番号 52

この機能を使用すると、リニア イメージャー スキャナがすべての Code 11 シンボルの整合性を確認し、データが、指定 されたチェック デジット アルゴリズムに適合しているかどうかを確認します。これにより、読み取られた Code 11 バー コードのチェック デジット メカニズムが選択されます。このオプションは、1 つのチェック デジットの確認、2 つのチェッ ク デジットの確認、または機能を無効にする場合に使用されます。

この機能を有効にするには、Code 11 シンボルで読み取ったチェック デジットの数に一致する下記のバーコードをスキャンします。

(00h)

1 つのチェック デジット (01h)

2 つのチェック デジット (02h)

11 - 40 LI4278 プロダクト リファレンス ガイド

Code 11 チェック デジットを転送

パラメータ番号 47

この機能は、Code 11 のチェック デジットの転送を許可するかどうかを選択します。

Code 11 チェック デジットを転送する (有効) (01h)

*Code 11 チェック デジットを転送しない (無効) (00h)

注 このパラメータの動作を有効にするには、「Code 11 チェック デジットの確認」を有効にする必要があります。

Interleaved 2 of 5 (ITF)

Interleaved 2 of 5 を有効/無効にする

パラメータ番号6

Interleaved 2 of 5 を有効または無効にするには、以下の該当するバーコードをスキャンし、Interleaved 2 of 5 の読み取り 桁数を次のページから選択します。

Interleaved 2 of 5 を有効にする (01h)

Interleaved 2 of 5 を無効にする (00h)

Interleaved 2 of 5 の読み取り桁数設定

パラメータ番号 22、23

コードの読み取り桁数は、そのコードが含むチェック デジットを含んだ、キャラクタ数 (つまり、可読文字)です。 Interleaved 2 of 5 の読み取り桁数を、任意長、1 または 2 種類の読み取り桁数、または指定範囲内の読み取り桁数に設定 します。Interleaved 2 of 5 の読み取り桁数の範囲は、0 ~ 55 桁です。デフォルトは 14 です。

- 1種類の読み取り桁数 読み取り桁数が1種類の Interleaved 2 of 5 シンボルだけを読み取ります。読み取り桁数は、 付録 D、数値バーコードから選択します。たとえば、14 文字の Interleaved 2 of 5 シンボルだけを読み取るには、 「Interleaved 2 of 5 - 1 種類の読み取り桁数」を選択し、次に、1、4 をスキャンします。操作を間違ったときや、 選択した設定を変更する場合は、キャンセル (D-3 ページ) をスキャンします。
- 2 種類の読み取り桁数 選択した 2 種類の読み取り桁数のいずれかを含む Interleaved 2 of 5 シンボルだけを読み取ります。読み取り桁数は、付録 D、数値バーコードから選択します。たとえば、2 文字または 14 文字の Interleaved 2 of 5 シンボルだけを読み取るには、「Interleaved 2 of 5 2 種類の読み取り桁数」を選択し、次に、0、2、1、4 をスキャンします。操作を間違ったときや、選択した設定を変更する場合は、キャンセル (D-3 ページ) をスキャンします。
- 指定範囲内 特定の読み取り範囲を持つ Interleaved 2 of 5 を読み取ります。読み取り桁数は、付録 D、数値バー コードから選択します。たとえば、4 ~ 12 桁の範囲を含む Interleaved 2 of 5 シンボルを読み取る場合は、 「Interleaved 2 of 5 - 指定範囲内」を選択し、次に、0、4、1、2 をスキャンします。指定する数字が1 桁の場合は、 最初に必ずゼロをスキャンしてください。操作を間違ったときや、選択した設定を変更する場合は、キャンセル (D-3 ページ)をスキャンします。
- **任意長** 任意の文字数の Interleaved 2 of 5 シンボルを読み取れます。
- Interleave 2 of 5 の読み取り可能コード上、コードの一部だけ走査したスキャン ラインでも完全なスキャンとして読み 取られる可能性があります。バーコードに実際にエンコードされているデータよりも少ないデータしか読み取れません。 これを防ぐには、特定の読み取り桁数(「Interleaved 2 of 5 - 1 種類の読み取り桁数」または「Interleaved 2 of 5 - 2 種 類の読み取り桁数」)を Interleaved 2 of 5 アプリケーションに対して選択します。

11 - 42 LI4278 プロダクト リファレンス ガイド

Interleaved 2 of 5 の読み取り桁数設定(続き)

*Interleaved 2 of 5 - 1 種類の読み取り桁数

Interleaved 2 of 5 - 2 種類の読み取り桁数

Interleaved 2 of 5 - 指定範囲内

Interleaved 2 of 5 - 任意長

Interleaved 2 of 5 チェック デジットの確認

パラメータ番号 49

すべての Interleaved 2 of 5 シンボルの整合性を確認し、データが Uniform Symbology Specification (USS)、または Optical Product Code Council (OPCC) チェック デジット アルゴリズムに準拠していることを検証するには、この機能を有効にします。

^{*} 無効 (00h)

USS チェック デジット (01h)

OPCC チェック デジット (02h)

Interleaved 2 of 5 チェック デジットを転送する

パラメータ番号 44

以下の該当するバーコードをスキャンし、Interleaved 2 of 5 データをチェック デジット付きまたはなしで転送します。

Interleaved 2 of 5 チェック デジットを転送する (有効) (01h)

^{*}Interleaved 2 of 5 チェック デジットを転送しない (無効) (00h)

Interleaved 2 of 5 を EAN-13 に変換する

パラメータ番号82

14 文字の Interleaved 2 of 5 コードを EAN-13 に変換し、EAN-13 としてホストに転送するには、このパラメータを有効に します。そのためには、Interleaved 2 of 5 コードを有効にし、コードに先頭のゼロと有効な EAN-13 チェック デジットを 付ける必要があります。

Interleaved 2 of 5 を EAN 13 に変換する (有効) (01h)

^{*}Interleaved 2 of 5 を EAN-13 に変換しない (無効) (00h)

Discrete 2 of 5 (DTF)

Discrete 2 of 5 を有効/無効にする

パラメータ番号5

Discrete 2 of 5 を有効または無効にするには、以下の該当するバーコードをスキャンします。

Discrete 2 of 5 を有効にする (01h)

^{*}Discrete 2 of 5 を無効にする (00h)

Discrete 2 of 5 の読み取り桁数設定

パラメータ番号 20、21

コードの読み取り桁数は、そのコードが含むチェック デジットを含んだ、キャラクタ数(つまり、可読文字)です。Discrete 2 of 5 の読み取り桁数を、任意長、1 または 2 種類の読み取り桁数、または指定範囲内の読み取り桁数に設定します。Discrete 2 of 5 読み取り桁数の範囲は、0 ~ 55 です。デフォルトは 12 です。

- 1種類の読み取り桁数 1 種類の選択した読み取り桁数のコードだけを読み取ります。読み取り桁数は、付録 D、数値バーコードから選択します。たとえば、14 字の Discrete 2 of 5 シンボルだけを読み取るには、「Discrete 2 of 5 1種類の読み取り桁数」を選択し、次に、1、4 をスキャンします。操作を間違ったときや、選択した設定を変更する場合は、キャンセル (D-3 ページ)をスキャンします。
- 2種類の読み取り桁数 選択した2種類の読み取り桁数のいずれかを含む Discrete 2 of 5 シンボルだけを読み取ります。読み取り桁数は、付録 D、数値パーコードから選択します。たとえば、2 文字または 14 文字の Discrete 2 of 5 シンボルだけを読み取るには、「Discrete 2 of 5 2種類の読み取り桁数」を選択し、次に、0、2、1、4 をスキャンします。操作を間違ったときや、選択した設定を変更する場合は、キャンセル (D-3 ページ) をスキャンします。
- 指定範囲内 特定の読み取り範囲を持つ Discrete 2 of 5 シンボルを読み取ります。読み取り桁数は、付録 D、 数値パーコードから選択します。たとえば、4 ~ 12 桁の範囲を指定する場合は、「Discrete 2 of 5 - 指定範囲内」を選 択し、次に、0、4、1、2 をスキャンします。指定する数字が1 桁の場合は、最初に必ずゼロをスキャンしてくださ い。操作を間違ったときや、選択した設定を変更する場合は、キャンセル (D-3 ページ) をスキャンします。
- **任意長**: 任意の文字数の Discrete 2 of 5 シンボルを読み取れます。
 - 注 Discrete 2 of 5 の読み取り可能コード上、コードの一部だけ走査したスキャン ラインでも完全なスキャンとして読み 取られる可能性があります。バーコードに実際にエンコードされているデータよりも少ないデータしか読み取れません。 これを防ぐには、指定の読み取り桁数 (「Discrete 2 of 5 - 1 種類の読み取り桁数」または「Discrete 2 of 5 - 2 種類の 読み取り桁数」)を Discrete 2 of 5 アプリケーションに対して選択します。

11 - 46 LI4278 プロダクト リファレンス ガイド

Discrete 2 of 5 の読み取り桁数設定(続き)

Discrete 2 of 5 - 1 種類の読み取り桁数

Discrete 2 of 5 - 2 種類の読み取り桁数

Discrete 2 of 5 - 指定範囲内

Discrete 2 of 5 - 任意長
Codabar (NW - 7)

Codabar を有効/無効にする

パラメータ番号7

Codabar を有効または無効にするには、以下の該当するバーコードをスキャンします。

Codabar を有効にする (01h)

^{*}Codabar を無効にする (00h)

Codabar の読み取り桁数設定

パラメータ番号24、25

コードの読み取り桁数は、そのコードが含むチェック デジットを含んだ、キャラクタ数(つまり、可読文字)です。Codabar の読み取り桁数を、1または2種類の読み取り桁数、または指定範囲内の読み取り桁数に設定します。デフォルトは5~55 です。

- 1種類の読み取り桁数 読み取り桁数が1 種類の Codabar シンボルだけを読み取ります。読み取り桁数は、付録 D、 数値パーコードから選択します。たとえば、14 文字の Codabar シンボルだけを読み取るには、「Codabar - 1 種類の読み取り桁数」を選択し、次に、1、4 をスキャンします。操作を間違ったときや、選択した設定を変更する場合は、キャンセル (D-3 ページ) をスキャンします。
- 2 種類の読み取り桁数 選択した 2 種類の読み取り桁数のいずれかを含む Codabar シンボルだけを読み取ります。読み取り桁数は、付録 D、数値バーコードから選択します。たとえば、2 文字または 14 文字の Codabar シンボルだけを読み取るには、「Codabar 2 種類の読み取り桁数」を選択し、次に、0、2、1、4 をスキャンします。 操作を間違ったときや、選択した設定を変更する場合は、キャンセル (D-3 ページ) をスキャンします。
- 指定範囲内 特定の読み取り範囲を持つ Codabar を読み取ります。読み取り桁数は、付録 D、数値バーコードから選択します。たとえば、4 ~ 12 桁の範囲を含む Codabar シンボルを読み取る場合は、「Codabar 指定範囲内」を選択し、次に、0、4、1、2 をスキャンします。指定する数字が 1 桁の場合は、最初に必ずゼロをスキャンしてください。操作を間違ったときや、選択した設定を変更する場合は、キャンセル (D-3 ページ) をスキャンします。
- 任意長 任意の文字数の Codabar (NW-7) シンボルを読み取れます。

11 - 48 LI4278 プロダクト リファレンス ガイド

Codabar の読み取り桁数設定(続き)

Codabar - 1 種類の読み取り桁数

Codabar - 2 種類の読み取り桁数

Codabar - 指定範囲内

Codabar - 任意長

CLSI 編集

パラメータ番号 54

スタート キャラクタとストップ キャラクタを取り除き、14 文字の Codabar シンボル中、1 番目、5 番目、および 10 番 目のキャラクタの後にスペースを挿入します。ホスト システムでこのデータ フォーマットが必要な場合にこの機能を有 効にします。

/ 注 シンボルの長さには、スタート キャラクタおよびストップ キャラクタは含まれていません。

CLSI 編集を有効にする (01h)

*CLSI 編集を無効にする (00h)

NOTIS 編集

パラメータ番号 55

読み取られた Codabar シンボルからスタート キャラクタとストップ キャラクタを取り除きます。 ホスト システムでこの データ フォーマットが必要な場合にこの機能を有効にします。

NOTIS 編集を有効にする (01h)

*NOTIS 編集を無効にする (00h)

Codabarの大文字または小文字のスタート/ストップキャラクタの検出

パラメータ番号 855

Codabarの大文字または小文字のスタート/ストップキャラクタを検出するかどうかを選択します。

小文字 (01h)

MSI

MSIを有効/無効にする

パラメータ番号 11

MSI を有効または無効にするには、以下の該当するバーコードをスキャンします。

MSI を有効にする (01h)

^{*}MSI を無効にする (00h)

MSIの読み取り桁数設定

パラメータ番号 30、31

コードの読み取り桁数は、そのコードが含むチェック デジットを含んだ、キャラクタ数 (つまり、可読文字)です。MSI の読み取り桁数を、1 または2種類の読み取り桁数、または指定範囲内の読み取り桁数に設定します。デフォルトは4~55 です。

- 1種類の読み取り桁数 読み取り桁数が1種類の MSI シンボルだけを読み取ります。読み取り桁数は、付録 D、数値 バーコードから選択します。たとえば、14 文字の MSI シンボルだけを読み取るには、「MSI - 1種類の読み取り桁 数」を選択し、次に、1、4 をスキャンします。操作を間違ったときや、選択した設定を変更する場合は、キャン セル (D-3 ページ) をスキャンします。
- 2種類の読み取り桁数 選択した2種類の読み取り桁数のいずれかを含む MSI シンボルだけを読み取ります。読み取り桁数は、付録 D、数値バーコードから選択します。たとえば、2文字または 14 文字の MSI シンボルだけを読み取るには、「MSI 2種類の読み取り桁数」を選択し、次に、0、2、1、4 をスキャンします。操作を間違ったときや、選択した設定を変更する場合は、キャンセル (D-3 ページ) をスキャンします。
- 指定範囲内 特定の読み取り範囲を持つ MSI を読み取ります。読み取り桁数は、付録 D、数値バーコードから選択します。たとえば、4 ~ 12 桁の範囲を含む Codabar シンボルを読み取る場合は、「MSI 指定範囲内」を選択し、次に、0、4、1、2 をスキャンします。指定する数字が1 桁の場合は、最初に必ずゼロをスキャンしてください。操作を間違ったときや、選択した設定を変更する場合は、キャンセル (D-3 ページ) をスキャンします。
- 任意長 任意の文字数の MSI シンボルを読み取れます。

11 - 52 LI4278 プロダクト リファレンス ガイド

MSIの読み取り桁数設定(続き)

MSI - 1 種類の読み取り桁数

MSI - 2 種類の読み取り桁数

MSI - 指定範囲内

MSI - 任意長

MSI チェック デジット

パラメータ番号 50

MSI シンボルでは、1 つのチェック デジットが必須であり、常にスキャナによって確認されます。2 番目のチェック デ ジットは任意です。MSI コードに 2 つのチェック デジットが含まれている場合、「**2 つの MSI チェック デジット**」バー コードをスキャンして 2 番目のチェック デジットを確認できるようにします。

2 番目のデジットのアルゴリズムの選択については、**MSI チェック デジットのアルゴリズム (11-54 ページ)**を参照してく ださい。

2 つの MSI チェック デジット (01h)

MSI チェック デジットの転送

パラメータ番号 46

以下のバーコードをスキャンし、MSI データをチェック デジット付きまたはなしで転送します。

MSI チェック デジットを転送する (有効) (01h)

^{*}MSI チェック デジットを転送しない (無効) (00h) MSI チェック デジットのアルゴリズム

パラメータ番号 51

2 番目の MSI チェック デジットの確認には 2 つのアルゴリズムが選択可能です。チェック デジットの読み取りに使用するアルゴリズムに対応する下記のバーコードを選択します。

MOD 10/MOD 11 (00h)

*MOD 10/MOD 10 (01h)

Chinese 2 of 5

Chinese 2 of 5 を有効/無効にする

パラメータ番号 408

Chinese 2 of 5 を有効または無効にするには、以下の該当するバーコードをスキャンします。

Chinese 2 of 5 を有効にする (01h)

* Chinese 2 of 5 を無効にする (00h)

11 - 56 LI4278 プロダクト リファレンス ガイド

Matrix 2 of 5

Matrix 2 of 5 を有効/無効にする

パラメータ番号 618

Matrix 2 of 5 を有効または無効にするには、以下の該当するバーコードをスキャンします。

Matrix 2 of 5 を有効にする (01h)

^{*} Matrix 2 of 5 を無効にする (00h)

Matrix 2 of 5 の読み取り桁数設定

パラメータ番号 619、620

コードの読み取り桁数は、そのコードが含むチェック デジットを含んだ、キャラクタ数 (つまり、可読文字)です。Matrix 2 of 5 の読み取り桁数を、任意長、1 または 2 種類の読み取り桁数、または指定範囲内の読み取り桁数に設定します。デフォ ルトは 14 (1 種類の読み取り桁数)です。

- 1種類の読み取り桁数 1 種類の選択した読み取り桁数のコードだけを読み取ります。読み取り桁数は、付録 D、数値パーコードから選択します。たとえば、14 文字の Matrix 2 of 5 シンボルだけを読み取るには、「Matrix 2 of 5 2 種類の読み取り桁数」を選択し、次に、1、4 をスキャンします。操作を間違ったときや、選択した設定を変更する場合は、キャンセル (D-3 ページ)をスキャンします。
- 2種類の読み取り桁数 選択した2種類の読み取り桁数のいずれかを含む Matrix 2 of 5 シンボルだけを読み取り ます。読み取り桁数は、付録 D、数値バーコードから選択します。たとえば、2文字または14 文字の Matrix 2 of 5 シンボルだけを読み取るには、「Matrix 2 of 5 - 2 種類の読み取り桁数」を選択し、次に、0、2、1、4 をスキャン します。操作を間違ったときや、選択した設定を変更する場合は、キャンセル (D-3 ページ) をスキャンします。
- 指定範囲内 特定の読み取り範囲を持つ Matrix 2 of 5 シンボルを読み取ります。読み取り桁数は、付録 D、数値パーコード から選択します。たとえば、4 ~ 12桁の範囲を含む Matrix 2 of 5 シンボル指定する場合は、「Matrix 2 of 5 指定範囲内」を選択し、次に、0、4、1、2 をスキャンします。指定する数字が1桁の場合は、最初に必ずゼロをスキャンしてください。操作を間違ったときや、選択した設定を変更する場合は、キャンセル (D-3 ページ) をスキャンします。
- **任意長** 任意の文字数の Matrix 2 of 5 シンボルを読み取れます。

Matrix 2 of 5 の読み取り桁数設定(続き)

^{*}Matrix 2 of 5 - 1 種類の読み取り桁数

Matrix 2 of 5 - 2 種類の読み取り桁数

Matrix 2 of 5 - 指定範囲内

Matrix 2 of 5 - 任意長

11 - 58 LI4278 プロダクト リファレンス ガイド

Matrix 2 of 5 チェック デジット

パラメータ番号 622

チェック デジットとは、シンボルの最後のキャラクタで、データの整合性を検証するために使用されます。以下の該当す るバーコードをスキャンし、バーコード データを Matrix 2 of 5 チェック デジット付きまたはなしで転送します。

Matrix 2 of 5 チェック デジットを有効にする (01h)

* Matrix 2 of 5 チェック デジットを無効にする (00h)

Matrix 2 of 5 チェック デジットを転送

パラメータ番号 623

以下の該当するバーコードをスキャンし、Mtarix 2 of 5 データをチェック デジット付きまたはなしで転送します。

Matrix 2 of 5 チェック デジットを転送 (01h)

^{*}Matrix 2 of 5 チェック デジットを転送しない (00h)

Korean 3 of 5

Korean 3 of 5 を有効/無効にする

パラメータ番号 581

Korean 3 of 5 を有効または無効にするには、以下の該当するバーコードをスキャンします。

 \checkmark

注 Korean 3 of 5 の読み取り桁数は 6 に固定されています。

Korean 3 of 5 を有効にする (01h)

^{*} Korean 3 of 5 を無効にする (00h)

反転1D

パラメータ番号 586

このパラメータは、反転 1D デコーダ設定を行います。以下のオプションがあります:

- 標準のみ 標準 1D バーコードのみを読み取ります。
- 反転のみ 反転 1D バーコードのみを読み取ります。
- 反転の自動検出 標準と反転の両方の 1D バーコードを読み取ります。

反転のみ (01h)

(02h)

GS1 DataBar

GS1 DataBar のバリエーションは DataBar-14、DataBar Expanded、および DataBar Limited です。Limited および Expanded バージョンには、スタック化バリエーションがあります。以下の適切なバーコードをスキャンして、各種 GS1 DataBar を有効または無効にします。

GS1 DataBar-14

パラメータ番号 338

* GS1 DataBar-14 を有効にする (01h)

GS1 DataBar-14 を無効にする (00h)

GS1 DataBar Limited

パラメータ番号 339

GS1 DataBar Limited を有効にする (01h)

^{*}GS1 DataBar Limited を無効にする (00h)

GS1 DataBar Expanded

パラメータ番号 340

*GS1 DataBar Expanded を有効にする (01h)

GS1 DataBar Expanded を無効にする (00h)

GS1 DataBar Limited の正確性レベル

パラメータ番号 728

リニア イメージャー スキャナは、GS1 DataBar Limited のバーコードに対して4 種類の読み取り精度レベルを設定できま す。読み取り精度とリニア イメージャー スキャナの読み取り速度は反比例します。読み取り精度レベルを上げると読み 取り速度が低下するので、必要な読み取り精度レベルだけを選択してください。

- レベル 1 クリア マージンは不要。この設定は元の GS1 標準に適合しますが、「9」および「7」で始まる一部の UPC シンボルのスキャンでは、DataBar Limited バーコードの読み取りで誤りが発生する可能性があります。
- レベル2-自動リスク検出。この読み取り精度では、一部の UPC シンボルのスキャンで DataBar Limited バーコードの読み取りに誤りが発生する可能性があります。スキャナは、デフォルトでレベル3 で読み取ります。それ以外はレベル1 で読み取ります。
- レベル3-正確性レベルは、5回の末尾クリアマージンを必要とする、新たに提案された GS1標準を反映します。
- レベル4-正確性レベルは、GS1で必要とされる標準以上に拡張されます。この読み取り精度には、5回の先頭および末尾クリアマージンが必要とされます。

GS1 DataBar Limited の正確性レベル(続き)

GS1 DataBar Limited の正確性レベル 1 (01h)

GS1 DataBar Limited の正確性レベル 2 (02h)

*GS1 DataBar Limited の正確性レベル 3

(03h)

GS1 DataBar Limited の正確性レベル 4 (04h)

GS1 DataBar を UPC/EAN に変換

パラメータ番号 397

このパラメータは、コンポジット シンボルの一部として読み取られない GS1 DataBar-14 と GS1 DataBar Limited シンボ ルだけに適用されます。単独のゼロを最初の桁としてエンコードする DataBar-14 および DataBar Limited シンボルから先 頭の「010」を取り除き、バーコードを EAN-13 として転送するには、このパラメータを有効にします。

2 個以上 6 個未満のゼロで開始されるバーコードでは、先頭の「0100」が取り除かれ、UPC-A として転送されます。シス テムキャラクタとカントリー コードを転送する「UPC-A プリアンブル」パラメータは、変換後のバーコードに適用され ます。システム キャラクタとチェック デジットは取り除かれません。

GS1 DataBar から UPC/EAN への変換を有効にする (01h)

^{*}GS1 DataBar から UPC/EAN への変換を無効にする (00h)

精度レベル

パラメータ番号78

リニア イメージャー スキャナの精度レベルは、4 種類あります。バーコード品質の低下に応じて、高いレベルの 精度レベルを選択します。精度レベルが上がれば、リニア イメージャー スキャナの読み取り速度は低下します。

バーコード品質に適した読み取り精度レベルを選択します。

精度レベル1

次のコードタイプは、読み取りの前に2回正常に読み取る必要があります。

表11-2 精度レベル1のコード

コードタイプ	コード長
Codabar	8 文字以下
MSI	4 文字以下
Discrete 2 of 5	8 文字以下
Interleaved 2 of 5	8 文字以下

精度レベル2

次のコードタイプは、読み取りの前に2回正常に読み取る必要があります。

表11-3 精度レベル2のコード

コードタイプ	コード長
すべて	すべて

精度レベル3

次のもの以外のコード タイプは、読み取りの前に 2 回正常に読み取る必要があります。 次のコードは 3 回読み取る必要が あります。

表11-4 精度レベル3のコード

コードタイプ	コード長
MSI	4 文字以下
Discrete 2 of 5	8 文字以下
Interleaved 2 of 5	8 文字以下
Codabar	8 文字以下

11 - 66 LI4278 プロダクト リファレンス ガイド

精度レベル4

次のコード タイプは、読み取りの前に3回正常に読み取る必要があります。

表11-5 精度レベル4のコード

コードタイプ	コード長
すべて	すべて

隋度レヘル (01h)

精度レベル 2 (02h)

精度レベル 3 (03h)

精度レベル 4 (04h)

正確性レベル

パラメータ番号 77

リニア イメージャー スキャナは、UPC/EAN、および Code 93 に対して 4 種類の読み取り正確性レベルを設定できます。 高いレベルの正確性を選択するほど、バーコード品質のレベルが低下します。正確性とリニア イメージャー スキャナの 読み取り速度は反比例するため、指定されたアプリケーションに必要な読み取り正確性レベルだけを選択してください。

- 正確性レベル 0:この設定では、リニア イメージャー スキャナは、最も高い読み取り速度で動作しながら、ほとんどの「規格内」のバーコードを読み取るうえでに十分な正確性を確保できます。
- 正確性レベル1:これはデフォルト設定です。ほとんどの読み取りミスを除去します。
- 正確性レベル 2: 正確性レベル 1 で読み取りミスの除去に失敗する場合は、このオプションを選択します。
- 正確性レベル3:正確性レベル2を選択してもまだ読み取りミスがある場合は、この正確性レベルを選択します。このオプションを選択するのは読み取り間違いに対する非常手段であり、バーコードの規格外であることに注意してください。この正確性レベルを選択すると、リニアイメージャースキャナの読み取り能力が大きく低下します。この正確性レベルが必要な場合は、バーコードの品質の改善を試みてください。

正確性レベル 0 (00h)

^{*}正確性レベル1 (01h)

正確性レベル 2 (02h)

正確性レベル 3 (03h)

キャラクタ間ギャップ サイズ

パラメータ番号 381

Code 39 および Codabar シンボル体系にはキャラクタ間ギャップがありますが、通常は非常に小さいものです。バーコード印刷技術によっては、このギャップが許容できる最大サイズより大きくなることがあり、リニア イメージャー スキャナはシンボルを読み取れなくなります。このような規格外のバーコードを処理できるようにするには、以下の「大きなキャラクタ間ギャップ」パラメータを選択します。

^{*}通常のキャラクタ間ギャップ (06h)

大きいキャラクタ間ギャップ (0Ah)

第 12 章 アドバンスド データ フォーマッ ティング

はじめに

アドバンスド データ フォーマッティング (ADF) とは、データをホスト デバイスに送信する前にカスタマ イズする手段です。ADF を使用し、要件に合わせてスキャン データを編集します。ADF ルールでイメージャ をプログラムする、関連する一連のバーコードをスキャンして、ADF を実装します。

詳細および ADF のプログラミング バーコードについては、『Advanced Data Formatting Programmer Guide』、 製品番号 72E-69680-xx を参照してください。

付録 A 標準のデフォルト設定パラメータ

 \checkmark

注 このガイドでは、リストされているパラメータ番号は、これらのパラメータの属性番号と同じです。

パラメータ	パラメータ 番号	デフォルト	ページ番号
無線通信			
無線通信 (ホスト タイプ)		クレードルのホスト	4-4
BT フレンドリー名	607	n/a	4-6
検出可能モード	610	一般	4-6
Apple iOS 対応 HID 機能	1114	無効	4-7
キーボード タイプ (カントリー コード)		英語 (U.S.)	4-8
HID キーボード キャラクタ間ディレイ		ディレイなし (0 ミリ秒)	4-10
Caps Lock オーバーライド		無効	4-10
不明な文字の無視		有効	4-11
キーパッドのエミュレート		無効	4-11
キーボードの FN1 置換		無効	4-12
ファンクション キーのマッピング		無効	4-12
Caps Lock のシミュレート		無効	4-13
大文字/小文字の変換		変換なし	4-13
再接続試行時のビープ音	559	無効	4-15
再接続試行間隔	558	30 秒	4-16

パラメータ	パラメータ 番号	デフォルト	ページ番号
Bluetooth キーボード エミュレーション (HID スレーブ) モー ドでの自動再接続	604	バーコード データで	4-17
動作モード (ポイント・ツー・ポイント/マルチポイント・ ツー・ポイント)	538	ポイント・ツー・ポイント	4-19
パラメータ ブロードキャスト (クレードル ホストのみ)	148	有効	4-20
装着時のビープ音	288	有効	4-18
ペアリング モード	542	非ロック	4-21
装着によるペアリング	545	有効	4-22
コネクション維持時間	5002	15 分	4-24
バッチ モード	544	通常 (データをバッチしない)	4-27
ページ ボタン	746	無効	4-28
認証	549	無効	4-29
PIN コード (設定と保存)	552	12345	4-30
可変 PIN コード	608	静的	4-30
暗号化	550	無効	4-31
Secure Simple Pairing の IO 機能 (SPP サーバーおよび SPP マスタ サーバー モードのみ)	911	入力なし/出力なし	4-32
ユーザー設定			<u> </u>
デフォルト設定パラメータ		デフォルト設定	5-4
バージョン通知		N/A	5-5
パラメータ バーコードのスキャン	236	有効	5-5
読み取り成功時のビープ音	56	有効	5-6
読み取り照明インジケータ	859	無効	5-6
ビープ音	145	中	5-7
電源投入ビープ音を抑制	721	抑制しない	5-8
ビープ音の音量	140	×	5-8
ビープ音を鳴らす時間	628	中程度	5-9
ハンドヘルド トリガ モード	138	レベル	5-9
ハンズフリー モード	630	有効	5-10
ロー パワー モード	128	有効	5-10
ロー パワー モード移行時間	146	100 ミリ秒	5-11
プレゼンテーション スリープ モード移行時間	662	5分	5-12

パラメータ	パラメータ 番号	デフォルト	ページ番号
自動照準からローパワー モードへのタイムアウト	729	15 秒	5-14
連続バーコード読み取り	649	無効	5-15
ユニーク バーコードの通知	723	無効	5-15
読み取りセッション タイムアウト	136	9.9 秒	5-16
同一バーコードの読み取り間隔	137	0.5 秒	5-16
異なるバーコードの読み取り間隔	144	0.2 秒	5-16
読み取り照明	298	有効	5-17
その他のオプション	•		
コード ID キャラクタの転送	45	なし	5-18
プリフィックス値	99、105	7013 <cr><lf></lf></cr>	5-19
サフィックス 1 の値 サフィックス 2 の値	98、104 100、106	7013 <cr><lf></lf></cr>	5-19
スキャン データ転送フォーマット	235	データどおり	5-20
FN1 置換值	103、109	設定	5-21
「読み取りなし」メッセージの転送	94	無効	5-22
非請求ハートビート間隔	1118	無効	5-23
スキャナ パラメータのダンプ			5-24
キーボード インタフェースのホスト パラメータ	l		
キーボード インタフェースのホスト タイプ		IBM PC/AT および IBM PC 互換機	6-4
キーボード タイプ (カントリー コード)		英語 (U.S.)	6-5
不明な文字の無視		送信	6-7
キャラクタ間ディレイ		ディレイなし	6-7
キーストローク内ディレイ		無効	6-8
代替用数字キーパッド エミュレーション		無効	6-8
Caps Lock オン		無効	6-9
Caps Lock オーバーライド		無効	6-9
インタフェース データの変換		変換なし	6-10
ファンクション キーのマッピング		無効	6-10
FN1 置換		無効	6-11
メーク/ブレークの送信		送信	6-11

A - 4 LI4278 プロダクト リファレンス ガイド

パラメータ	パラメータ 番号	デフォルト	ページ番号
RS-232 ホストのパラメータ			
RS-232 ホスト タイプ		標準	7-6
ボーレート		9600	7-8
パリティ タイプ		なし	7-9
ストップ ビットの選択		1 ストップ ビット	7-9
データ長		8ビット	7-10
受信エラーのチェック		有効	7-10
ハードウェア ハンドシェイク		なし	7-12
ソフトウェア ハンドシェイク		なし	7-14
ホスト シリアル レスポンス タイムアウト		2 秒	7-15
RTS 制御線の状態		Low	7-16
<bel> キャラクタによるビープ音</bel>		無効	7-16
キャラクタ間ディレイ		0ミリ秒	7-17
Nixdorf のビープ音 /LED オプション		通常の操作	7-18
不明な文字の無視		バーコードを送信	7-18
USB ホスト パラメータ			<u> </u>
USB ホストのパラメータ		HID キーボード エミュレーション	8-5
Symbol Native API (SNAPI) ステータス ハンドシェイク		有効	8-6
USB キーボード タイプ (カントリー コード)		英語 (U.S.)	8-7
キャラクタ間ディレイ (USB 専用)		ディレイなし	8-9
Caps Lock オーバーライド (USB 専用)		無効	8-9
不明な文字の無視 (USB 専用)		送信	8-10
不明なバーコードを Code 39 に変換 (USB 専用)		変換しない	8-10
キーパッドのエミュレート		無効	8-11
先行ゼロでキーパッドをエミュレートする		無効	8-11
クイック キーパッド エミュレーション		無効	8-12
USB キーボードの FN1 置換		無効	8-12
ファンクション キーのマッピング		無効	8-13
Caps Lock のシミュレート		無効	8-13
大文字/小文字の変換		変換なし	8-14

パラメータ	パラメータ 番号	デフォルト	ページ番号
静的 CDC (USB 専用)		有効	8-14
ビープ音の無視		無効	8-15
バーコード設定の無視		無効	8-15
USB のポーリング間隔		8 ミリ秒	8-17
IBM 468X/469X ホスト パラメータ			
ポート アドレス		選択なし	9-4
不明バーコードを Code 39 に変換		変換しない	9-5
ビープ音の無視		無効	9-5
バーコード設定の無視		無効	9-6
UPC/EAN			·
UPC-A	1	有効	11-6
UPC-E	2	有効	11-6
UPC-E1	12	無効	11-7
EAN-8/JAN 8	4	有効	11-7
EAN-13/JAN 13	3	有効	11-8
Bookland EAN	83	無効	11-8
UPC/EAN/JAN サプリメンタルの読み取り (2 桁および 5 桁)	16	無視	11-10
ユーザが設定できるサプリメンタル サプリメンタル 1: サプリメンタル 2:	579 580	000(ゼロ)	11-12
UPC/EAN/JAN サプリメンタルの読み取り繰返回数	80	10	11-12
サプリメンタルコード付き UPC/EAN/JAN の AIM コード ID フォーマット	672	結合	11-13
UPC-A チェック デジットを転送	40	転送	11-14
UPC-E チェック デジットを転送	41	転送	11-14
UPC-E1 チェック デジットを転送	42	転送	11-15
UPC-A プリアンブル	34	システム キャラクタ	11-16
UPC-E プリアンブル	35	システム キャラクタ	11-17
UPC-E1 プリアンブル	36	システム キャラクタ	11-18
UPC-E から UPC-A フォーマットへの変換	37	無効	11-19
 UPC-E1 から UPC-A フォーマットへの変換	38	無効	11-19

パラメータ	パラメータ 番号	デフォルト	ページ番号
EAN-8/JAN-8 拡張	39	無効	11-20
Bookland ISBN 形式	576	ISBN-10	11-20
UCC クーポン拡張コード	85	無効	11-21
クーポン レポート	730	新クーポン フォーマット	11-21
ISSN EAN	617	無効	11-22
CODE 128			
CODE 128	8	有効	11-23
Code 128 の読み取り桁数設定	209、210	任意長	11-24
GS1-128 (旧 UCC/EAN-128)	14	有効	11-25
ISBT 128	84	有効	11-25
ISBTの連結	577	無効	11-26
ISBT テーブルのチェック	578	有効	11-27
ISBT 連結の読み取り繰返回数	223	10	11-27
CODE 39			L
CODE 39	0	有効	11-28
Trioptic Code 39	13	無効	11-28
Code 39 から Code 32 への切り替え (Italian Pharmacy Code)	86	無効	11-29
Code 32 プリフィックス	231	無効	11-29
Code 39 の読み取り桁数設定	18、19	2 ~ 55	11-30
Code 39 チェック デジットの確認	48	無効	11-31
Code 39 Full ASCII の読み取り	43	無効	11-31
Code 39 Full ASCII 変換	17	無効	11-32
Code 39 のバッファ	113	無効	11-33
CODE 93			<u> </u>
CODE 93	9	無効	11-35
Code 93 の読み取り桁数設定	26、27	4 ~ 55	11-35
CODE 11	· · · · · · · · · · · · · · · · · · ·	·	
CODE 11	10	無効	11-37
Code 11 の読み取り桁数設定	28、29	4 ~ 55	11-37
Code 11 チェック デジットの確認	52	無効	11-39
CODE 11 チェック デジットの転送	47	無効	11-40

パラメータ	パラメータ 番号	デフォルト	ページ番号	
Interleaved 2 of 5 (ITF)				
Interleaved 2 of 5 (ITF)	6	無効	11-41	
Interleaved 2 of 5 の読み取り桁数設定	22、23	14	11-41	
Interleaved 2 of 5 チェック デジットの確認	49	無効	11-43	
Interleaved 2 of 5 チェック デジットを転送	44	無効	11-43	
Interleaved 2 of 5 から EAN 13 への変換	82	無効	11-44	
Discrete 2 of 5 (DTF)				
Discrete 2 of 5	5	無効	11-45	
Discrete 2 of 5 の読み取り桁数設定	20、21	12	11-45	
Codabar (NW - 7)				
Codabar	7	無効	11-47	
Codabar の読み取り桁数設定	24、25	5 ~ 55	11-47	
CLSI 編集	54	無効	11-49	
NOTIS 編集	55	無効	11-49	
Codabar の大文字または小文字のスタート/ストップ キャラ クタの検出	855	大文字	11-50	
MSI				
MSI	11	無効	11-51	
MSIの読み取り桁数設定	30、31	4~55	11-51	
MSI チェック デジット	50	10	11-53	
MSI チェック デジットの転送	46	無効	11-53	
MSI チェック デジットのアルゴリズム	51	Mod 10/Mod 10	11-54	
Chinese 2 of 5				
Chinese 2 of 5 を有効/無効にする	408	無効	11-55	
Matrix 2 of 5				
Matrix 2 of 5 を有効/無効にする	618	無効	11-56	
 Matrix 2 of 5 読み取り桁数	619、620	14 (1 種類の読み取り桁数)	11-57	
Matrix 2 of 5 チェック デジット	622	無効	11-58	
Matrix 2 of 5 チェック デジットを転送	623	転送しない	11-58	
Korean 3 of 5				
Korean 3 of 5	581	無効	11-59	

A-8 LI4278 プロダクト リファレンス ガイド

パラメータ	パラメータ 番号	デフォルト	ページ番号	
反転 1D				
反転 1D	586	標準	11-60	
GS1 DataBar		•		
GS1 DataBar-14	338	有効	11-61	
GS1 DataBar Limited	339	無効	11-61	
GS1 DataBar Expanded	340	有効	11-62	
GS1 DataBar Limited の正確性レベル	728	レベル 3	11-63	
GS1 DataBar を UPC/EAN に変換	397	無効	11-64	
読み取り精度レベル				
精度レベル	78	1	11-66	
正確性レベル	77	1	11-67	
キャラクタ間ギャップ サイズ	381	通常	11-68	

付録 B プログラミング リファレンス

シンボルコードID

表 B-1 シンボル コード キャラクタ

コード キャラクタ	コードタイプ
A	UPC-A、UPC-E、UPC-E1、EAN-8、EAN-13
В	Code 39、Code 32
С	Codabar
D	Code 128、ISBT 128、ISBT 128 連結
E	Code 93
F	Interleaved 2 of 5
G	Discrete 2 of 5、または Discrete 2 of 5 IATA
Н	Code 11
J	MSI
К	GS1-128
L	Bookland EAN
М	Trioptic Code 39
Ν	クーポン コード
R	GS1 DataBar ファミリ
S	Matrix 2 of 5
U	Chinese 2 of 5
V	Korean 3 of 5
Х	ISSN EAN

AIMコードID

各 AIM コード ID は、]cm の 3 文字で構成されています。それぞれの意味は次のとおりです。

-] = フラグ キャラクタ (ASCII 93)
- c = コード キャラクタ (<mark>表 B-2</mark> 参照)
- m = 修飾キャラクタ (<mark>表 B-3</mark> 参照)

表 B-2 AIM コード キャラクタ

コード キャラクタ	コードタイプ
Α	Code 39、Code 39 Full ASCII、Code 32
С	Code 128、ISBT 128、ISBT 128 連結、GS1-128、 Coupon (Code 128 portion)
E	UPC/EAN、Coupon (UPC 部分)
е	GS1 DataBar ファミリ
F	Codabar
G	Code 93
Н	Code 11
I	Interleaved 2 of 5
М	MSI
S	Discrete 2 of 5、IATA 2 of 5
Х	Bookland EAN、ISSN EAN、Trioptic Code 39、Chinese 2 of 5、 Matrix 2 of 5、Korean 3 of 5

修飾キャラクタは、当該オプションの値の和で、表 B-3に基づいています。

表 B-3 修飾キャラクタ

コードタイプ	オプション値	オプション	
Code 39	0	チェック キャラクタまたは Full ASCII の処理なし。	
	1	リーダーは1つのチェック キャラクタをチェックしました。	
	3	リーダーはチェック キャラクタをチェックして取り除きました。	
	4	リーダーは Full ASCII キャラクタ変換を実行しました。	
	5	リーダーは Full ASCII キャラクタ変換を実行し、1 つのチェック キャラ クタをチェックしました。	
	7	リーダーは Full ASCII キャラクタ変換を実行し、チェック キャラクタを チェックして取り除きました。	
	例 : チェック キャラクタ W 付きの Full ASCII バーコードである A+I+MI+DW は、]A7 AIMID (7 = (3+4)) として転送されます。		
Trioptic Code 39	0	この時点で指定されたオプションなし。常に0が転送されます。	
	例:Trioptic バーコー	ド 412356 は]X0 412356 として転送されます。	
Code 128	0	標準データ パケット、最初のシンボル位置にファンクション コード 1 なし。	
	1	最初のシンボル キャラクタ位置にファンクション コード 1。	
	2	2 番目のシンボル キャラクタ位置にファンクション コード 1。	
	例:最初の位置にファンクション1キャラクタである ^{FNC1} がある Code (EAN) 128 バーコード の場合、AIMID は、] C1 AIMID として転送されます。		
Interleaved 2 of 5	0	チェック デジットの処理なし。	
	1	リーダーはチェック デジットを検証しました。	
	3	リーダーはチェック デジットをチェックして取り除きました。	
	例:チェック デジッ 送されます。	トのない Interleaved 2 of 5 バーコードの場合、4123 は、]I0 4123 として転	
Codabar	0	チェック デジットの処理なし。	
	1	リーダーはチェック デジットをチェックしました。	
	3	リーダーは転送前にチェック デジットを取り除きました。	
	例:チェック デジットなしの Codabar バーコードの場合、4123 は]F0 4123 として転送され ます。		
Code 93	0	この時点で指定されたオプションなし。常に0が転送されます。	
	例:Code 93 バーコード 012345678905 は、]G0 012345678905 として転送されます。		
MSI	0	チェック デジットが送信されます。	
	1	チェック デジットは送信されません。	
	例:MSI バーコードで て転送されます。	ぎ1つのチェック デジットがチェックされた場合、4123 は、]M1 4123 とし	

B-4 LI4278 プロダクト リファレンス ガイド

表 B-3 修飾キャラクタ (続き)

コードタイプ	オプション値	オプション
Discrete 2 of 5	0	この時点で指定されたオプションなし。常に0が転送されます。
	例:Discrete 2 of 5 バ	ーコード 4123 は]S0 4123 として転送されます。
UPC/EAN	0	フル EAN フォーマットの標準データ パケット、つまり、UPC-A、UPC-E、 EAN-13 の 13 桁 (サプリメンタル データを含まない)。
	1	2 桁のサプリメンタル データのみ。
	2	5 桁のサプリメンタル データのみ。
	3	EAN-13、UPC-A、または UPC-E シンボルからの 13 桁で構成される、ま たはサプリメンタル シンボルからの 2 または 5 桁で構成される統合され たデータ パケット。
	4	EAN-8 データ パケット。
	例:UPC-A バーコー	ド 012345678905 は]E0 0012345678905 として転送されます。
Bookland EAN	0	この時点で指定されたオプションなし。常に0が転送されます。
	例:Bookland EAN バ	ーコード 123456789X は]X0 123456789X として転送されます。
ISSN EAN	0	この時点で指定されたオプションなし。常に0が転送されます。
	例:ISSN EAN バーコード 123456789Xは]X0 123456789X として転送されます。	
Code 11	0	単一のチェック デジット。
	1	2 つのチェック デジット。
	3	チェック キャラクタは検証されましたが送信されませんでした。
GS1 DataBar ファ ミリ		この時点で指定されたオプションなし。常に 0 が転送されます。アプリ ケーション ID「01」とともに転送される GS1 DataBar-14 および GS1 DataBar Limited。 注:GS1-128 エミュレーション モードでは、GS1 DataBar は Code 128 ルール (つまり]C1)を使用して転送されます。
	例 :GS1 DataBar-14 れます。	バーコード 0110012345678902 は]e 00110012345678902 として転送さ
付録 C サンプルバーコード

Code 39

UPC/EAN

UPC-A、100%

C - 2 LI4278 プロダクト リファレンス ガイド

EAN-13、100%

Code 128

12345678901234567890123456789012345678901234

Interleaved 2 of 5

GS1 DataBar

注 以下のバーコードを読み取るには、各種の GS1 DataBar を有効にする必要があります (GS1 DataBar (11-61 ページ) を 参照)。

10293847560192837465019283746029478450366523 (GS1 DataBar Expanded Stacked)

1234890hjio9900mnb (GS1 DataBar Expanded)

08672345650916 (GS1 DataBar Limited)

GS1 DataBar-14

55432198673467 (GS1 DataBar-14 Truncated)

90876523412674 (GS1 DataBar-14 Stacked)

付録 D 数値バーコード

数値バーコード

特定の数値が必要なパラメータについては、対応する番号の付いたバーコードをスキャンします。

キャンセル

間違いを訂正したり、選択した設定を変更したりする場合は、次のバーコードをスキャンします。

キャンセル

付録 E 英数字バーコード

英数字キーボード

%

E-2 LI4278 プロダクト リファレンス ガイド

英数字キーボード(続き)

英数字バーコード E-3

英数字キーボード(続き)

&

1

E-4 LI4278 プロダクト リファレンス ガイド

英数字キーボード(続き)

;

英数字キーボード(続き)

英数字キーボード(続き)

/ 注 次のバーコードを数字キーパッドのバーコードと混同しないようにしてください。

0

英数字バーコード E-7

英数字キーボード(続き)

6

キャンセル

E-8 LI4278 プロダクト リファレンス ガイド

英数字キーボード(続き)

F

英数字バーコード E-9

英数字キーボード(続き)

J

E - 10 LI4278 プロダクト リファレンス ガイド

英数字キーボード(続き)

英数字キーボード(続き)

U

英数字バーコード E-11

E - 12 LI4278 プロダクト リファレンス ガイド

英数字キーボード(続き)

英数字バーコード E-13

英数字キーボード(続き)

e

g

E - 14 LI4278 プロダクト リファレンス ガイド

英数字キーボード(続き)

m

р

英数字バーコード E-15

英数字キーボード(続き)

r

E - 16 LI4278 プロダクト リファレンス ガイド

英数字キーボード(続き)

I

英数字バーコード E-17

英数字キーボード(続き)

付録 F ASCII キャラクタ セット

表 F-1 ASCII 値一覧

ASCII 值	Full ASCII Code 39 エンコード キャラクタ	キーストローク
1000	%U	CTRL 2
1001	\$A	CTRL A
1002	\$B	CTRL B
1003	\$C	CTRL C
1004	\$D	CTRL D
1005	\$E	CTRL E
1006	\$F	CTRL F
1007	\$G	CTRL G
1008	\$H	CTRL H/BACKSPACE ¹
1009	\$1	CTRL I/HORIZONTAL TAB ¹
1010	\$J	CTRL J
1011	\$K	CTRL K
1012	\$L	CTRL L
1013	\$M	CTRL M/ENTER ¹
1014	\$N	CTRL N
1015	\$O	CTRL O

太字のキーストロークは、「ファンクション キーのマッピング」パラメータが有効な場合のみ送信 されます。それ以外の場合は、太字でない方のキーストロークが送信されます。

表 F-1 ASCII 値一覧 (続き)

ASCII 値	Full ASCII Code 39 エンコード キャラクタ	キーストローク
1016	\$P	CTRL P
1017	\$Q	CTRL Q
1018	\$R	CTRL R
1019	\$S	CTRL S
1020	\$T	CTRL T
1021	\$U	CTRL U
1022	\$V	CTRL V
1023	\$W	CTRL W
1024	\$X	CTRL X
1025	\$Y	CTRL Y
1026	\$Z	CTRL Z
1027	%A	CTRL [
1028	%В	CTRL \
1029	%C	CTRL]
1030	%D	CTRL 6
1031	%E	CTRL -
1032	スペース	スペース
1033	/A	!
1034	/B	u
1035	/C	#
1036	/D	?
1037	/E	%
1038	/F	&
1039	/G	1
1040	/H	(
1041	/I)
1042	/J	*
1043	/K	+
1044	/L	、

太字のキーストロークは、「ファンクション キーのマッピング」パラメータが有効な場合のみ送信 されます。それ以外の場合は、太字でない方のキーストロークが送信されます。

表 F-1 ASCII 値一覧(続き)

ASCII 值	Full ASCII Code 39 エンコード キャラクタ	キーストローク
1045	-	-
1046		
1047	/o	1
1048	0	0
1049	1	1
1050	2	2
1051	3	3
1052	4	4
1053	5	5
1054	6	6
1055	7	7
1056	8	8
1057	9	9
1058	/Z	:
1059	%F	. ,
1060	%G	<
1061	%Н	=
1062	%I	>
1063	%J	?
1064	%V	@
1065	А	A
1066	В	В
1067	С	С
1068	D	D
1069	E	E
1070	F	F
1071	G	G
1072	Н	Н
1073	1	1

|太字のキーストロークは、「ファンクション キーのマッピング」パラメータが有効な場合のみ送信 |されます。それ以外の場合は、太字でない方のキーストロークが送信されます。

表 F-1 ASCII 値一覧 (続き)

ASCII 値	Full ASCII Code 39 エンコード キャラクタ	キーストローク
1074	J	J
1075	К	К
1076	L	L
1077	М	М
1078	Ν	Ν
1079	0	0
1080	Р	Р
1081	Q	Q
1082	R	R
1083	S	S
1084	Т	Т
1085	U	U
1086	V	V
1087	W	W
1088	Х	Х
1089	Y	Y
1090	Z	Z
1091	%К	[
1092	%L	1
1093	%M]
1094	%N	٨
1095	%O	-
1096	%W	1
1097	+A	а
1098	+B	b
1099	+C	с
1100	+D	d
1101	+E	е
1102	+F	f

太宇のキーストロークは、「ファンクション キーのマッピング」パラメータが有効な場合のみ送信 されます。それ以外の場合は、太字でない方のキーストロークが送信されます。

表 F-1 ASCII 値一覧(続き)

ASCII 値	Full ASCII Code 39 エンコード キャラクタ	キーストローク
1103	+G	g
1104	+H	時
1105	+1	i
1106	+J	j
1107	+K	k
1108	+L	1
1109	+M	m
1110	+N	n
1111	+0	0
1112	+P	р
1113	+Q	q
1114	+R	r
1115	+S	S
1116	+T	t
1117	+U	u
1118	+V	v
1119	+W	W
1120	+X	x
1121	+Y	у
1122	+Z	Z
1123	%P	{
1124	%Q	1
1125	%R	}
1126	%S	~

太宇のキーストロークは、「ファンクション キーのマッピング」パラメータが有効な場合のみ送信 されます。それ以外の場合は、太字でない方のキーストロークが送信されます。

表 F-2 ALT キー標準デフォルトの表

ALT キー	キーストローク
2064	ALT 2
2065	ALT A
2066	ALT B
2067	ALT C
2068	ALT D
2069	ALT E
2070	ALT F
2071	ALT G
2072	ALT H
2073	ALT I
2074	ALT J
2075	ALT K
2076	ALT L
2077	ALT M
2078	ALT N
2079	ALT O
2080	ALT P
2081	ALT Q
2082	ALT R
2083	ALT S
2084	ALT T
2085	ALT U
2086	ALT V
2087	ALT W
2088	ALT X
2089	ALT Y
2090	ALT Z

その他キー	キーストローク
3001	PA 1
3002	PA 2
3003	CMD 1
3004	CMD 2
3005	CMD 3
3006	CMD 4
3007	CMD 5
3008	CMD 6
3009	CMD 7
3010	CMD 8
3011	CMD 9
3012	CMD 10
3013	CMD 11
3014	CMD 12
3015	CMD 13
3016	CMD 14

表 F-3 その他キー標準デフォルトの表

表 F-4 GUI Shift キー

その他の値	キーストローク
3048	GUI 0
3049	GUI 1
3050	GUI 2
3051	GUI 3
3052	GUI 4
3053	GUI 5
3054	GUI 6
3055	GUI 7
3056	GUI 8
3057	GUI 9

Apple™ iMac キーボードのアップル キーは、スペース バーの隣にあります。Windows ベー スのシステムの GUI キーは、左側の ALT キーと左側と、右側の ALT キーの右隣にそれぞれ 1 つずつあります。

表 F-4 GUI Shift キー (続き)

その他の値	キーストローク
3065	GUI A
3066	GUI B
3067	GUI C
3068	GUI D
3069	GUI E
3070	GUI F
3071	GUI G
3072	GUI H
3073	GUI I
3074	GUI J
3075	GUI K
3076	GUI L
3077	GUI M
3078	GUI N
3079	GUI O
3080	GUI P
3081	GUI Q
3082	GUI R
3083	GUI S
3084	GUI T
3085	GUI U
3086	GUI V
3087	GUI W
3088	GUI X
3089	GUI Y
3090	GUI Z

Apple™ iMac キーボードのアップル キーは、スペース バーの隣にあります。Windows ベー スのシステムの GUI キーは、左側の ALT キーと左側と、右側の ALT キーの右隣にそれぞれ 1 つずつあります。

PF +	キーストローク
4001	PF 1
4002	PF 2
4003	PF 3
4004	PF 4
4005	PF 5
4006	PF 6
4007	PF 7
4008	PF 8
4009	PF 9
4010	PF 10
4011	PF 11
4012	PF 12
4013	PF 13
4014	PF 14
4015	PF 15
4016	PF 16

表 F-5 PF キー標準デフォルトの表

表 F-6 F キー標準デフォルトの表

F +	キーストローク
5001	F 1
5002	F 2
5003	F 3
5004	F 4
5005	F 5
5006	F 6
5007	F 7
5008	F 8
5009	F 9
5010	F 10
5011	F 11

表 F-6 F キー標準デフォルトの表(続き)

F #	キーストローク
5012	F 12
5013	F 13
5014	F 14
5015	F 15
5016	F 16
5017	F 17
5018	F 18
5019	F 19
5020	F 20
5021	F 21
5022	F 22
5023	F 23
5024	F 24

表 F-7 数値キー標準デフォルトの表

数字キーパッド	キーストローク
6042	*
6043	+
6044	未定義
6045	-
6046	
6047	/
6048	0
6049	1
6050	2
6051	3
6052	4
6053	5
6054	6
6055	7
6056	8
表 F-7 数値キー標準デフォルトの表(続き)

数字キーパッド	キーストローク
6057	9
6058	Enter
6059	Num Lock

表 F-8 拡張キーパッド標準デフォルトの表

拡張キーパッド	キーストローク
7001	Break
7002	Delete
7003	Pg Up
7004	End
7005	Pg Dn
7006	Pause
7007	Scroll Lock
7008	Backspace
7009	Tab
7010	Print Screen
7011	Insert
7012	Home
7013	Enter
7014	Escape
7015	上矢印
7016	下矢印
7017	左矢印
7018	右矢印

付録 G 通信プロトコル機能

通信(ケーブル)インタフェースでサポートされる機能

表 G-1には、通信プロトコルでサポートされるスキャナ機能の一覧を示します。

CR0078-S (標準クレードル)使用時の LI4278

表 G-1 CR0078-S 通信インタフェース機能使用時の LI4278

	機能											
通信インタフェース	データ転送	リモート管理	静止画および 動画の転送									
USB												
HID キーボード エミュレーション	対応	使用不可	使用不可									
簡易 COM ポート エミュレーション	対応	使用不可	使用不可									
CDC COM ポート エミュレーション	対応	使用不可	使用不可									
SSI over CDC COM ポート エミュレーション	使用不可	使用不可	使用不可									
IBM テーブルトップ USB	対応	対応	使用不可									
IBM ハンドヘルド USB	対応	対応	使用不可									
USB OPOS ハンドヘルド	対応	対応	使用不可									
イメージング インタフェースなし Symbol Native API (SNAPI)	使用不可	使用不可	使用不可									
イメージング インタフェース付き Symbol Native API (SNAPI)	使用不可	使用不可	使用不可									
東芝テック	使用不可	使用不可	使用不可									

表 G-1 CR0078-S 通信インタフェース機能使用時の Ll4278 (続き)

		機能										
通信インタフェース	データ転送	リモート管理	静止画および 動画の転送									
RS-232												
標準 RS-232	対応	使用不可	使用不可									
ICL RS-232	対応	使用不可	使用不可									
Fujitsu RS-232	対応	使用不可	使用不可									
Wincor-Nixdorf RS-232 Mode A	対応	使用不可	使用不可									
Wincor-Nixdorf RS-232 Mode B	対応	使用不可	使用不可									
Olivetti ORS4500	対応	使用不可	使用不可									
Omron	対応	使用不可	使用不可									
CUTE	使用不可	使用不可	使用不可									
OPOS/JPOS	対応	使用不可	使用不可									
SSI	使用不可	使用不可	使用不可									
IBM 4690	•	•	•									
ハンドヘルド スキャナ エミュレーション (ポート 9B)	対応	使用不可	使用不可									
テーブルトップ スキャナ エミュレーション (ポート 17)	対応	使用不可	使用不可									
非 IBM スキャナ エミュレーション (ポート 5B)	対応	対応	使用不可									
キーボード インタフェース												
IBM PC/AT および IBM PC 互換機	対応	使用不可	使用不可									
IBM AT NOTEBOOK	対応	使用不可	使用不可									

CR0078-P(プレゼンテーションクレードル)使用時の LI4278

機能 通信インタフェース 静止画および データ転送 リモート管理 動画の転送 USB HID キーボード エミュレーション 対応 使用不可 使用不可 簡易 COM ポート エミュレーション 対応 使用不可 使用不可 CDC COM ポート エミュレーション 対応 使用不可 使用不可 SSI over CDC COM ポート エミュレーション 対応 対応 使用不可 IBM テーブルトップ USB 対応 対応 使用不可 IBM ハンドヘルド USB 対応 対応 使用不可 USB OPOS ハンドヘルド 対応 対応 使用不可 イメージング インタフェースなし Symbol 対応 対応 使用不可 Native API (SNAPI) イメージング インタフェース付き Symbol 対応 対応 対応 Native API (SNAPI) 東芝テック 使用不可 使用不可 使用不可 **RS-232** 標準 RS-232 対応 使用不可 使用不可 ICL RS-232 対応 使用不可 使用不可 Fujitsu RS-232 対応 使用不可 使用不可 Wincor-Nixdorf RS-232 Mode A 対応 使用不可 使用不可 Wincor-Nixdorf RS-232 Mode B 対応 使用不可 使用不可 Olivetti ORS4500 対応 使用不可 使用不可 Omron 対応 使用不可 使用不可 CUTE 対応 使用不可 使用不可 **OPOS/JPOS** 対応 使用不可 使用不可 SSI 使用不可 使用不可 使用不可 IBM 4690 ハンドヘルド スキャナ エミュレーション 対応 使用不可 使用不可 (ポート 9B) 使用不可 テーブルトップ スキャナ エミュレーション 対応 使用不可 (ポート 17) 非 IBM スキャナ エミュレーション 対応 使用不可 使用不可 (ポート 5B)

表 G-2 CR0078-P 通信インタフェース機能使用時の LI4278

表 G-2 CR0078-P 通信インタフェース機能使用時の Ll4278 (続き)

	機能											
通信インタフェース	データ転送	リモート管理	静止画および 動画の転送									
キーボード インタフェース												
IBM PC/AT および IBM PC 互換機	対応	使用不可	使用不可									
IBM AT NOTEBOOK	対応	使用不可	使用不可									

		 	 	 	. 11-12, 11-43
記号	+				
粉孛		 	 	 	

奴 丁																
123Scan2	 	 	•	•				•	•			•		1	0-	1

あ

アクセサリ	1-18
ストラップ	1-18
アドバンスド データ フォーマッティング	12-1
暗号化	4-31

え

エラー表示	
その他のスキャナ オプション	. 4-1
転送	7-15
入力	. 3-4
フォーマット	. 3-7
不明な文字6-7, 7-18,	8-10
ACK/NAK	7-13
ADF	. 3-4
ENQ	7-13
RS-232C	. 3-5
RS-232C での転送	7-11
XON/XOFF	7-13
エリア インジケータ	4-18

か

各部																	
クレードル	 	 											1	-2	1,	1-	5
各部の名称																	
スキャナ	 	 														1-3	3

き	
技術仕様	-9
規則	
表記	ХΧ
キーボード インタフェースの接続6	-2
キーボード インタフェースのデフォルト6	-3
キーボード インタフェースのパラメータ6	-4
キャラクタ セット	19

<

クレードル
インタフェース1-2
図
スキャナに装着1-14
接続
電源
取り付け1-10
ピン配列
クレードル各部 1-4, 1-5
クレードルの構成xv

け

ケー	·ブル																							
	接続																					1	-8	3
	設置																					1	-6	9
ケー	・ブルの	Dł	構	Б	t																		X١	V

こ 構成

構成	,												
	スキャナ .		 	 									.xiii
	製品ライン		 	 									. XV
⊐ <i>−</i>	・ド ID												
	修飾キャラ	クタ	 	 								E	3-3
	シンボル .		 	 								E	3-1
	AIM $\neg - F$	D.	 	 								E	3-2
] –	ドロキャ	ラクタ		 							• •	. 5	-18

さ

再接続試行 4-16 再接続試行のビープ音 4-15 再調整、バッテリのバーコード 4-17 サービスに関する情報
サンフル ハーコート
Code 128 C-2
Code 39 C-1
GS1 DataBar
Interleaved 2 of 5
UPC/EAN

し

自動再接続 4-3, 4-14, 4-20, 4-23
充電
仕様
情報、サービスに関するxxi
照明
シリアル ポート プロファイル
サポート
スレーブ 4-3
ペアリング 4-3
マスタ
信号の意味
シンボル体系のデフォルト設定パラメータ 11-2

す

スキャナ各部 1-3
スキャナからクレードルへのサポート
スキャナの構成xiii
スキャン
エラー
シーケンスの例5-2, 11-1
無線通信シーケンスの例
スレーブ
スレーブ シリアル ポート プロファイル

せ

製品ラインの構成	x٧
セットアップ	
キーボード インタフェースの接続 6	ò-2
クレードル 1	1-7
クレードルの取り付け1-	10
ケーブルの接続1-8, 1	1-9
スキャナ	1-7
スキャナをクレードルに装着	14
電源1-8, 1	1-9
パッケージの開梱	1-2
IBM 468X/469X ホストへの接続)-2
RS-232Cインタフェースの接続7	7-2
USB インタフェースの接続8	3-2

そ

その他のオプションのデフォルト		5-3
-----------------	--	-----

っ

通信エリア外インジケータ	 	 	 			 	.4	-18
通信プロトコル	 	 					. (G-1

τ

フォルト設定パラメータ
キーボード インタフェース
シンボル体系11-2
すべて
その他のオプション5-3
標準のデフォルト値の一覧F-1
無線通信
ユーザー設定5-2
IBM
RS-232C
USB
源

٢

トラブルシューティング	 	 3-4
取り付け		
クレードル	 	 1-10

に

は

バーコード
可変 PIN コード4-30
キーボード インタフェース
キーストローク内ディレイ
キーボードインタフェースのタイプ(カントリーコー
۴)
キャラクタ間ディレイ
代替用数字キーパッド エミュレーション6-8
不明な文字の無視
ホスト タイプ6-4
Caps Lock オーバーライド
Caps Lock オン6-9
キャンセル
検出可能モード4-6
コード ID キャラクタの転送
異なるバーコードの読み取り間隔
再接続試行間隔4-16
再試行接続のビープ音
サプリメンタル11-9
自動再接続の間隔
照明
シンボル体系
GS1 DataBar Limited
数値バーコードD-3
スキャナからクレードルへのサポート4-19
スキャン データ オプション5-20
装着時のビープ音4-18
デフォルトの設定5-4

同一バーコードの読み取り間隔 5-16 トリガ モード 5-9, 5-10, 5-14 バーコード形式
デフォルトの一覧 11-2
GS1 DataBar Limited
ハッナ モート
バッファリング
パラメータ ブロードキャスト
パラメータのスキャン 5-5
ハンズ フリー モード
反転1-0
バントヘルト モート
ビープ音の音量
プリフィックス/サフィックス値
プレゼンテーション スリープ モード移行時間 5-12, 5-13
ペアリング解除
無線電波出力
ユーーク ハーコート読み取り
読み取り成功時のビープ音
読み取りセッション タイムアウト
連続バーコード読み取り 5-15
ローパワーモード 5-10
ローパワー モード移行時間
ロック無効化
Hueroouti キーホート エミュレーション (IND スレーン) モードでの自動再接続 4-17
Bluetooth テクノロジーのサポート
Bluetooth フレンドリー名 4-6
Bookland EAN
Bookland ISBN
Collinese 2 01 5
Codabar CLSI 編集 11-49
Codabar NOTIS 編集
Codabar のスタート キャラクタおよびストップ キャラク
タ 11-50
Codabar の読み取り桁数 11-47
Code 11 11-3/ Code 11 11-3/
Code 11 の読み取り桁数 11-37 Code 128 11-23
Code 128 の読み取り桁数 11-23
Code 39 11-28
バッファの転送11-34
Code 39 Full ASCII 11-32
Code 39 チェック デジットの確認 11-31
Code 39 チェック テンットの転送 11-31 Code 20 のきな取りた粉 11 20
Code 93
Code 93 の読み取り桁数 11-35
Discrete 2 of 5
読み取り桁数 11-46
EAN Zero Extend 11-20
EAN-13/JAN-13
EAN1 置换值 5.21
[2 -0

GS1 DataBar Expanded 11-62
GS1 DataBar Limited
GS1 DataBar-14
GS1 Databar から UPC/EAN への変換 11-64
GS1-128 11-25
IBM 468X/469X
バーコート設定の無視
不明ハーコートを Code 39 へ変換
小一トプトレス
inteneaved 2015
記の取り们致
LAN-13 10 支援
Interleaved 2 of 5 チェック デジットの確認 11-43
Interleaved 2 of 5 チェック デジットの転送 11-43
ISBT 128
ISBT の連結
ISBT 連結の読み取り繰返回数 11-27
ISSN EAN
Korean 3 of 5
Matrix 2 of 5
Matrix 2 of 5 チェック デジット 11-58
Matrix 2 of 5 チェック デジットの転送 11-58
Matrix 2 of 5 の読み取り桁数 11-56, 11-57
MSI
MSI チェック デジット 11-53
MSI チェック デジットのアルゴリズム11-54
MSI チェック デジットの転送 11-53
MSIの読み取り桁数 11-51
「NR (読み取りなし)」メッセージの転送5-22
RS-232C
キャラクタ间ティレイ
受信エフーのナェック
ストツノ ヒツトの選択
テーダ長
ハートリェア ハントシェイク
个明な乂子の無視
ホスト ンリアル レスホノス ダイムアリト /-13 キュー タノプ
ホストダイン
ホーレート
NIXUOIT のビーフ目/LED オフフョン7-10 DTS 制御娘の伴能 7.16
RS-232C のパラメータ
パリティ 7-9
UCC クーポン拡張コード 11-21
クーポンコード
サプリメンタルの読み取り繰返回数 11-12.11-13
UPC/EAN/JAN
サプリメンタル コード付き AIM ID フォーマット
11-13
サプリメンタルの読み取り繰返回数11-12
UPC-A 11-6
UPC-A/E/E1 チェック デジット 11-14, 11-15
UPC-A プリアンブル
UPC-E
LIDC E プリマンブル 11 17

UPC-E から UPC-A への変換	11-19
	11 10
	11-19
+ 文字 / 小文字の変換	8-14
スステ/小ステの复換 オプションのパラメータ	8-15
キーパッドのエミュレート	8_11
キーボード タイプ	8-7
キーボードの FN1 置換	
キャラクタ間ディレイ	
クイック エミュレーション	8-12
静的 CDC	8-14
先行ゼロでキーパッドをエミュレートする	5 8-11
デバイス タイプ	8-5, 8-6
ファンクション キーのマッピング	8-13
不明な文字	8-10
ポーリング間隔	.8-16, 8-17
Caps Lock オーバーライド	8-9
Caps Lock のシミュレート	8-13
SNAPI ハンドシェイク	8-6
バーコードのデフォルト	
キーボード インタフェース	6-3
すべて	A-1
その他のオプション	5-3
無線通信	4-2
ユーザー設定	5-2
IBM	9-3
RS-232C	7-3
USB	8-4
バーコード RS-232C	
ソフトウェア ハンドシェイク	7-13
パッケージの開梱	1-2
バッチ モード保存データ	4-26
バッテリ	
再調整	1-13
充電	1-12
挿入と取り外し	1-11
電源オフ	1-12
バッテリの交換	1-11
バッテリの再調整バーコード	.1-12, 1-13
バッテリの挿入	1-11
	1-11
バラメータ	~ ~ ~
	4-16
	4-15
スキャナからクレードルへのサホート	4-19
装着時のビーノ音	
ハッナモート	.4-26, 4-27
ハツナリの冉調登	. 1-12, 1-13
いりリング 胖际	
ボ砂週16	4-4 , ט-+-ט, 4-4 ۱ סס
コヤノンコン稚村时间 白動百埣結の問障	4-23 1 11
ロ 刧 冊 按 杭 の 间 惘 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
パラノ モード ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	.+-20, 4-27 1 20
ハラグ ラブロードイヤヘト・・・・・・ ペアリング	4 -20 1 20
、, , ノノ ,	4-3 4-4
Rluetooth テクノロジーのサポート	.

IBM 468X/469X9-4
RS-232C
USB8-5
デフォルトの設定5-4
ローパワー モード移行時間
パラメータのデフォルト
キーボード インタフェース
その他のオプション5-3
無線通信
ユーザー設定5-2
IBM
RS-232C
USB8-4
バレットxx

ひ

ビー	・プ音の	定義														
	スキャ	ン.						-		 			 		. 2-	1
	パラメ	ータ	プロ	グ	ラミ	Ξ.	1	ブ		 			 		. 2-	3
	標準									 			 		. 2-	1
	ペアリ	ング								 			 		. 4-	3
	ホスト	別.								 			 		. 2-	4
	無線												 		. 4-	3
	無線操	作.											 		. 2-	2
	ADF フ	゚ログ	ラミ	ン	グ								 		. 2-	3
	Code 3	39 バ	ッフ	アリ	リン	ック	ř.			 			 		. 2-	4
表記	規則									 			 		X	X
標準	のデフ	オル	ト設	定/	٩Ę	メ	_	・タ		 			 		. F-	1
ピン	·配列															
	クレー	ドル	言号	の意	意味	ŧ							 		 3-1	3

~

ペアリング	
アドレス	
クレードル ホスト	4-3
コネクション維持時間	
充電クレードル	1-7
装着による	4-2
トラブルシューティング	3-6, 3-7
バーコード	.1-4, 2-2, 4-3
バーコードのフォーマット	
ペアリング解除	
ポイント・ツー・ポイント	4-19
方法	
ホストへの接続の切断	1-10
マスタ	
マスタ/スレーブのセットアップ	4-5
マルチポイント・ツー・ポイント通信	4-19
無線通信	1-18
モード	4-2. 4-20
ロック無効化	
$PIN \sqsupset - F$	
SPP	
ペアリング解除	
バーコード・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
ペアリング ビープ音の定義	

ほ

ポイント・ツー・ポイント通信 4	-19
ホスト タイプ	
キーボード インタフェース	6-4
IBM (ポート アドレス)	9-4
RS-232C	7-7
USB	8-6
保存データ	
バッチ モード 4	-26

ま

マスタ	3-5, 4-5
マスタ シリアル ポート プロファイル	. 4-3, 4-14, 4-20
マルチポイント・ツー・ポイント通信	4-19

む
無線通信
再接続試行 4-16
再接続試行のビープ音
デフォルト 4-2
パラメータ
ペアリング 1-18
ポイント・ツー・ポイント 4-19
マルチポイント・ツー・ポイント 4-19
Bluetooth Technology Profile Support

හ

メンテナンス	 	 	 . 3-1
バッテリ	 	 	 . 3-3
リニア イメージャー スキャナ	 	 	 . 3-2

Þ

ユーザー設定のデフォルト 5-2	2
ユーザー設定バーコード	
装着時のビープ音4-18	3
バッチ モード	7
デフォルトの設定 5	4
ローパワー モード移行時間	1

ろ

露出オプション	
照明	5-17
ロック ペアリング モード	4-23
ロック無効化	4-22
ローパワーモード	4-14

A

ADF	12-1
転送エラー	3-4
無効な規則	3-4
ASCII 値	
キーストローク	F-1
キーボード インターフェース	6-13
Full ASCII Code 39 Encode Character	F-1

RS-23	32C)																7-19	9
USB																		8-18	3

В

Bluetooth	
暗号化	4-31
キーボード エミュレーション	. 4-3
クレードル	. 1-7
シリアル ポート プロファイル	. 4-5
セキュリティ	4-29
接続解除イベント	. 2-2
通信が切断	. 3-5
認証	4-29
ビープ音の定義	. 2-2
フレンドリー名の設定	. 4-6
プロファイル	. 4-3
	4-23
HID	4-17
$PIN \sqsupset - F \qquad \dots \qquad $	4-30
Secure Simple Pairing 入出力機能	4-32
SPP 4-14,	4-23
Technology Profile Support	1-18

C

Codabar バーコード
スタート キャラクタおよびストップ キャラクタ 11-50
読み取り桁数 11-47
CLSI 編集 11-49
Codabar
NOTIS 編集 11-49
Code 11 バーコード
読み取り桁数
Code 11 11-37
Code 128 バーコード
読み取り桁数 11-23
Code 128 11-23
GS1-128 11-25
ISBT 128
ISBT の連結
ISBT 連結の読み取り繰返回数
Code 39 バーコード
チェック デジットの確認
チェック デジットの転送
バッファリング 11-32, 11-33
読み取り桁数 11-30
Code 39 11-28
Full ASCII 11-32
Code 93 バーコード
読み取り桁数 11-35
Code 93 11-35

D

Discrete 2 of 5 バーコード	
Discrete 2 of 5	11-45

G

GS1 DataBar	11-61
GS1 Databar	
GS1 Databar から UPC/EAN への変換	11-64

Η

HID スレーブ	4-3
HID プロファイル	4-5

I

IBM 468X/469X の接続	-2
IBM 468X/469X のパラメータ	-4
IBM のデフォルト	-3
Interleaved 2 of 5 バーコード	
チェック デジットの確認	13
チェック デジットの転送	13
EAN-13 への変換	14

K

Korean 3 of 5 バーコード	 11-59

L

LED	
充電	-13 -13
放電1	-13

Μ

Matrix 2 of 5 バーコード 11-5	56
チェック デジット	58
転送チェック デジット	58
読み取り桁数11-56, 11-5	57
MSIバーコード	
チェック デジット 11-5	53
チェック デジットのアルゴリズム 11-5	54
チェック デジットの転送	53
読み取り桁数11-5	51
MSI 11-5	51

Ρ

PIN	$\neg -$	ド																		
	可変			 															4-3	0
	静的			 															4-3	0

R

RS-232 接続	 	 	 	 		 	. 7-2
RS-232 デフォルト設定	 	 	 	 		 	. 7-3
RS-232 パラメータ	 	 	 	 		 	. 7-4

S

Secure Simple Pairing 入出力機能	 4-32
SPP	

サポート
スレーブ
ペアリング
マスタ

U

UPC/EAN バーコード	
サプリメンタル	11-9
チェック デジット	11-14, 11-15
Bookland EAN	11-8
Bookland ISBN	11-20
EAN-13/JAN-13	11-8
EAN-8/JAN-8	11-7
EAN ゼロ拡張	11-20
ISSN EAN	11-22
UCC クーポン拡張コード	11-21
UPC-A	11-6
UPC-A プリアンブル	11-16
UPC-E	11-6
UPC-E1	11-7
UPC-E1 から UPC-A への変換	11-19
UPC-E から UPC-A への変換	11-19
UPC-E プリアンブル	11-17
USB 接続	8-2
USB のデフォルト	8-4
USB パラメータ	8-5

用語集

Α

- API. あるソフトウェア コンポーネントが他のコンポーネントと通信したり、他のコンポーネントを制御したりする際に使用するインタ フェース。通常は、あるソフトウェア コンポーネントが、ソフトウェアの割り込みや機能の呼び出しによって、他のコンポーネン トに提供するサービスを指します。
- ASCII. American Standard Code for Information Interchange の略。128 文字、数字、句読点および制御文字を表す、7 ビット + パリティ ビットのコード。アメリカでの標準的なデータ転送コードです。

В

- BIOS. Basic Input Output System の略。標準的な PC ハードウェアのインタフェースに使用する標準 API と、ROM ベースのコードを まとめたもの。
- BOOTP. ディスクレス デバイスのリモート ブート用プロトコル。コンピュータに IP アドレスを割り当てて、ブート ファイルを指定し ます。クライアントはブロードキャストとして bootp サーバー ポート (67) へ bootp 要求を送信し、bootp サーバーは bootp クラ イアント ポート (68) を使用して応答します。bootp サーバーには、すべてのデバイス、関連する MAC デバイスおよび IP アドレ スのテーブルが入っている必要があります。
- bps. 「ビット/秒 (bps)」を参照してください。

С

- CDRH. Center for Devices and Radiological Health (医療機器・放射線保健センター)の略。レーザ製品の安全性に関する規制を行う連邦政府機関。この機関は、レーザ操作時の電源出力に基づいて各種レーザ操作クラスを規定しています。
- CDRH Class 1. 最も低いパワーの CDRH レーザ分類です。このクラスは、すべてのレーザ出力が目の瞳孔に向けられた場合でも本質 的に安全であると見なされます。このクラスでは特別な操作手順は規定されていません。
- CDRH Class 2. この制限に準拠するために追加のソフトウェアメカニズムを用意する必要はありません。このクラスのレーザは、人体 に意図的に直接照射しない限り、特に危険性はありません。
- **Codabar.** セルフチェックを行うディスクリート コード。0 ~ 9 の数字と 6 つの追加文字 (- \$: / , +) で構成される文字セットが含まれ ます。
- CODE 128. コントローラで 128 文字すべての ASCII 文字をシンボル要素を追加せずにエンコードできる、高密度なシンボル体系。

用語集2 LI4278 プロダクト リファレンス ガイド

- Code 3 of 9 (Code 39). 汎用性が高く、広く使用されている英数字バーコードのシンボル体系。すべての大文字、0~9の数字、および7つの特殊文字 (-./+% \$ およびスペース) を含む 43 種類のキャラクタで構成されます。このコード名は、キャラクタを示す 9 つの要素のうち 3 つが広く、残りの 6 つが狭いことに由来しています。
- **CODE 93.** Code 39 と互換性を持つ工業用シンボル体系。完全な ASCII キャラクタ セットを提供し、Code 39 よりも高い密度の コーディングを実現します。

COM ポート.通信ポート。ポートは COM1 や COM2 など、数字で識別されます。

CR0078 標準クレードルでのマルチポイント・ツー・ポイント モードとロック ペアリング モード. クレードルには最大 3 台のス キャナを接続できます。4 台目を接続しようとすると拒否されます。3 台のスキャナがクレードルにアクティブに接続されて いる場合、4 台目のスキャナではロック無効化が機能しません。

すでに接続されているスキャナのいずれかのペアリングが (ペアリング解除 (4-22 ページ)のスキャンにより) 解除された場合、 その時点で4 台目のスキャナを接続できるようになります。

接続済みのスキャナのいずれかが通信エリア外に移動された場合(またはバッテリが取り外された場合)、接続タイムアウト時間が経過するまで4台目のスキャナを接続することはできません。ただし、ロック無効化バーコードを使用すれば4台目のス キャナをすぐに接続することができます。

- CR0078 標準クレードルでのマルチポイント・ツー・ポイント モードと非ロック ペアリング モード.クレードルには最大3台のスキャナを接続できます。4 台目を接続しようとすると拒否されます。接続済みのスキャナのいずれかでペアリングが解除されたり、通信エリア外に移動した場合(またはバッテリが取り外された場合)、その時点で4台目のスキャナを接続できるようになります。
- CR0078 プレゼンテーション クレードルでのマルチポイント・ツー・ポイント モードとロック ペアリング モード. クレードルには最大 7 台のスキャナを接続できます。8 台目を接続しようとすると拒否されます。接続されたスキャナのいずれかで (ペアリング解除 (4-22 ページ)のスキャンにより) ペアリングが解除されると、スロットは空いているものとみなされ、別のスキャナがこのスロットを使用できるようになります。接続されている 7 台のスキャナのいずれかが通信エリア外に移動された場合 (またはバッテリが取り外された場合)、コネクション維持タイムアウトが始まり、スロットはこのタイムアウトが終了するまで当該のスキャナが使用できる状態で保持されます。このモードで 8 台目のスキャナを接続するには ロック無効化 (4-22 ページ)をスキャンします。これにより、それまで接続されていたスキャナのいずれかの接続が切断されます。
- CR0078 プレゼンテーション クレードルでのマルチポイント・ツー・ポイント モードと非ロック ペアリング モード. クレードル には最大7台のスキャナを接続できます。8台目のスキャナを接続すると、接続済みのスキャナのいずれかの接続が切断されます。

D

Discrete 2 of 5. 各キャラクタを5本のバー(うち2本の幅が広い)のグループで表す2進数のバーコードのシンボル体系。グループ内の幅の広いバーの場所によって、エンコードされるキャラクタが決定されます。スペースは重要ではありません。数字キャラクタ(0~9)と、スタートまたはストップキャラクタのみがエンコード可能です。

DRAM. Dynamic random access memory (ダイナミック ランダム アクセス メモリ)の略。

Ε

EAN. 欧州統一商品番号。これは UPC のヨーロッパ/国際版で、独自のコーディング形式とシンボル体系標準があります。エレ メントの寸法はメートル法で指定されています。EAN は、主に小売業で使用されます。

ENQ (RS-232). ホストへ送信されるデータ用に、ENQ ソフトウェアによるハンドシェイキングもサポートされています。

ESD. Electro-Static Discharge (静電気放電)の略。

F

FTP.「ファイル転送プロトコル」を参照してください。

Н

Hz. ヘルツ。1 秒あたり1 サイクルと同等の周波数の単位です。

- IDE. Intelligent Drive Electronics の略。ソリッドステート ハード ドライブのタイプを指します。
- IEC. International Electrotechnical Commission (国際電気標準会議)の略。この国際機関は、レーザ操作時の電源出力に基づいて各 種レーザ操作クラスを規定することによって、レーザの安全性を規制しています。
- IEC60825-1 Class 1. 最も低いパワーの IEC レーザ分類です。この規格に準拠しているかどうかは、1000 秒の時間枠でレーザ操作 が 120 秒間に制限されていることと、スキャナの振動ミラーが故障した場合にレーザが自動シャットダウンされることによっ て確認されます。
- IEEE アドレス.「MAC アドレス」を参照してください。
- Interleaved 2 of 5.5 本のバーと 5 本のインターリーブドスペースで構成されるグループ内の、キャラクタのペアを表す 2 進数の バーコードのシンボル体系。インターリーブにより、情報の高密度化が可能になります。各グループ内の太いエレメント (バー /スペース)の位置は、エンコードされるキャラクタによって決まります。このコンティニアス コード タイプは、キャラクタ 間スペースを使用しません。数字 (0 ~ 9) と、スタートまたはストップ キャラクタのみがエンコード可能です。
- Interleaved 2 of 5.5 本のバーと5 本のインターリーブドスペースで構成されるグループ内の、キャラクタのペアを表す2 進数の バーコードのシンボル体系。インターリーブにより、情報の高密度化が可能になります。各グループ内の太いエレメント (バー/ スペース)の位置は、エンコードされるキャラクタによって決まります。このコンティニアス コード タイプは、キャラクタ間 スペースを使用しません。数字 (0 ~ 9) と、スタートまたはストップ キャラクタのみがエンコード可能です。
- I/O ポート.2 つのデバイス間を接続するインタフェース。共通の物理特性、信号特性、および信号の意味によって定義されます。 インタフェースのタイプとしては、RS-232 と PCMCIA があります。

IOCTL. Input/Output Control (入出力制御)の略。

- IP アドレス. (インターネット プロトコル アドレスの略) IP ネットワークに接続されたコンピュータのアドレス。すべてのクライ アントおよびサーバー ステーションは、固有の IP アドレスを持っている必要があります。IP ネットワーク上のコンピュータ では、32 ビット アドレスが使用されます。クライアント ワークステーションには、固定アドレスか、セッションごとに動的 にワークステーションに割り当てられるアドレスを設定します。IP アドレスは、ピリオドで分割された 4 セットの数字で記述 されます。たとえば、204.171.64.2 などとなります。
- **IPX/SPX.** Internet Package Exchange/Sequential Packet Exchange の略。Novell 用の通信プロトコルです。IPX は、XNS や IP に 類似した Novell の第 3 層のプロトコルで、NetWare ネットワークで使用されます。SPX は、Xerox SPP プロトコルの Novell 版です。
- **IS-95.** Interim Standard 95 の略。CDMA 携帯電話サービスの運用を規定する EIA/TIA 標準です。IS-95A と IS-95B のバージョンが あります。「CDMA」を参照してください。

L

LCD.「液晶ディスプレイ」を参照してください。

LED インジケータ.インジケータとして使用される半導体ダイオード (LED は発光ダイオード)。多くはデジタル ディスプレイに 使用されます。この半導体は、印加電圧を使用して、ある特定の周波数の光を発生します。周波数は半導体の化学組成によっ て決定されます。

Μ

MIL. 1 mil は 1 インチの 1/1000 です。

Ν

NVM. Non-Volatile Memory (不揮発性メモリ)の略。

0

ODI.「Open Data-Link Interface」を参照してください。

Open Data-Link Interface (ODI). ネットワーク ハードウェアと高レベル プロトコルの間のインタフェースに関する、Novell のド ライバ仕様。1 つの NIC (ネットワーク インタフェース コントローラ)で複数のプロトコルをサポートします。他の ODI 互換 プロトコルから送信されたネットワーク情報や要求を理解し、NetWare クライアントが理解および処理可能なデータに変換す ることができます。

Ρ

- PAN. Personal area network (パーソナル エリア ネットワーク)の略。PAN では、Bluetooth 無線テクノロジによって、複数のデ バイスが無線で通信できます。一般的に無線 PAN は、約 10m の範囲内で通信する 254 台までのデバイスの動的なグループで 構成されます。通常は、この限定された領域の中にあるデバイスのみがネットワークに参加できます。
- PC カード. ラップトップ コンピュータやその他のデバイスに使用する、プラグイン拡張カード。PCMCIA カードともいいます。 PC カードは長さ 85.6mm x 幅 54mm で、68 ピン コネクタがついています。PC カードには、次のようなさまざまな種類があ ります。
 - Type I: 厚さ 3.3mm、用途は RAM やフラッシュ RAM
 - Type II: 厚さ 5mm、用途はモデムや LAN アダプタ
 - Type III: 厚さ 10.5mm、用途はハード ディスク

PCMCIA. Personal Computer Memory Card Interface Association の略。「PC カード」を参照してください。

- **PING.** Packet Internet Groper の略。特定の IP アドレスがオンラインであるかどうかを判断するために使用されるインターネット ユーティリティ。パケットを送信して応答を待つことで、ネットワークをテストしたりデバッグしたりするために使用されます。
- **Print Contrast Signal (PCS).** シンボルのバーとスペースの間のコントラスト (明るさの違い)を測定した値。バーコードがス キャン可能になるには、最小限の PCS 値が必要です。PCS = (RL - RD) / RL と計算します。PL は背景の反射率、PD は暗 いバーの反射率を表します。

Q

QWERTY. 北米と一部欧州の PC キーボードで一般的に使用される標準的なキーボード。"QWERTY" は、キーボードの上から 3 列 目のキー配列を指します。

R

- RAM. Random Access Memory (ランダム アクセス メモリ)の略。RAM 内のデータにはランダムな順序でアクセスでき、すばやい読み書きが可能です。
- RF. Radio Frequency (無線周波数)の略。

ROM. Read-Only Memory (読み出し専用メモリ)の略。ROM に格納されたデータを変更または削除することはできません。

RS-232. 米国電子工業会 (EIA) の標準で、デバイス間でのデータのシリアル転送に使用するコネクタ、コネクタ ピンおよび信号を 定義しています。

S

SDK. ソフトウェア開発キット (Software Development Kit)

- SHIP. Symbol Host Interface Program の略。
- SID. System Identification code (システム識別コード)の略。業界ごとに FCC が発行する識別子です。携帯デバイスでホーム サービスとローミング サービスを区別できるようにするため、携帯電話キャリアでも SID をブロードキャストします。
- STEP. Symbol Terminal Enabler Program の略。

SVTP. Symbol Virtual Terminal Program の略。

Т

- TCP/IP. Transmission Control Protocol/Internet Protocol の略。異種システム間をネットワーク接続するために使用される通信プロ トコルです。この標準はインターネットのプロトコルであり、通信に関するグローバルな標準となっています。TCP は転送機 能を提供します。これにより、送信された合計バイト数が相手側で正しく受信されるようになります。UDP は代替的な転送機 能で、配信は保証されません。UDP は、異常なパケットが再送されないリアルタイムの音声および映像の転送に使用されま す。IP はルーティングメカニズムを備えています。TCP/IP はルーティング可能なプロトコルです。これは、すべてのメッセー ジに、宛先ステーションのアドレスだけでなく宛先ネットワークのアドレスも含まれていることを意味します。これにより組 織内や世界中の複数のネットワークに TCP/IP メッセージを送信できるため、TCP/IP は世界中のインターネットで使用されて います。TCP/IP ネットワーク内のすべてのクライアントとサーバーには、固定 IP アドレス、または起動時に動的に割り当て られる IP アドレスが必要です。
- Telnet. インターネットや TCP/IP ベースのネットワークで一般的に使用される、ターミナル エミュレーション プロトコル。これ により、ターミナルやコンピュータを使用するユーザーがリモート デバイスにログオンし、プログラムを実行することができ ます。
- Terminate and Stay Resident (TSR). DOS で動作するプログラム。ハードウェア/ソフトウェア割り込みに応答できるよう、フォ アグラウンドの実行の終了後もメモリ内に残り、バックグラウンド処理を実行します。メモリ内に常駐し、他の DOS プログ ラムに代わってサービスを提供することもあります。
- TFTP. Trivial File Transfer Protocol (簡易ファイル転送プロトコル)の略。TCP/IP FTP (ファイル転送プロトコル)のバージョンの 1 つで、ディレクトリやパスワードの機能はありません。ファームウェアのアップグレード、ソフトウェアのダウンロード、 およびディスクレス デバイスのリモート ブートに使用されるプロトコルです。

Transmission Control Protocol/Internet Protocol.「TCP/IP」を参照してください。

TSR.「Terminate and Stay Resident」を参照してください。

U

- UDP. User Datagram Protocol (ユーザー データグラム プロトコル)の略。IP プロトコル セットに含まれるプロトコルのひとつで、 信頼性の高い配信が必要でない場合に、TCP に代わって使用されます。たとえば、再転送する時間がないためにパケットが失 われても単純に無視されるようなリアルタイムの音声および映像のトラフィックに対して、UDP が使用されます。UDP を使 用して信頼性の高い配信を行う必要がある場合は、パケット シーケンスのチェックとエラー通知をアプリケーション内に記述 する必要があります。
- **UPC.** Universal Product Code (ユニバーサル プロダクト コード)の略。比較的複雑な数字のシンボル体系です。各キャラクタは 2 つのバーと 2 つのスペースで構成され、そのそれぞれが 4 種類の幅のいずれかになります。米国での小売の食品パッケージで 標準的に使用されるシンボル体系です。

あ

アプリケーション プログラミング インタフェース (Application Programming Interface). 「API」を参照してください。

こ

インターリーブド バーコード.キャラクタが2つ1組になったバーコード。バーを使用して最初のキャラクタを表し、間のスペー スを使用して2番目のキャラクタを表します。

う

ウォーム ブート. ウォーム ブートは、実行中の全プログラムを終了してモバイル コンピュータを再起動します。フラッシュ メモ リに保存されていないデータはすべて失われます。

え

- 液晶ディスプレイ (LCD).2 枚のガラス板の間に封入された液晶を使用したディスプレイ。液晶は電圧を正確にかけることによって 励起し、そのバイアスに従って光を外側に反射させます。消費電力が少なく、比較的高速で応答します。液晶の情報をユーザー 側に反射するには、外光が必要となります。
- エレメント.バーやスペースを表す汎用的な用語。
- エンコード領域. コード パターンのすべてのキャラクタ (スタート/ストップ キャラクタとデータを含む) が占める、全体的な長さの寸法。

お

オープン システム認証.オープン システム認証は、null 認証アルゴリズムです。

か

開口.読み取り範囲/視野を設定するレンズやバッフルによって定義される、光学システムの開口部。

解像度 特定の読み取りデバイスによって識別される、または特定のデバイスや方法で印刷される、最も幅の狭いエレメントの寸法。

アドバンスド データ フォーマッティング - 7

可視半導体レーザ (VLD). 可視レーザ光を発生する、半導体素子を使用したデバイス。

簡易ファイル転送プロトコル.「TFTP」を参照してください。

き

キー.データの暗号化や復号を行うためのアルゴリズムによって使用される特定のコード。「暗号化」と「復号」も参照してください。

基板.実体やイメージが配置される基板の素材。

キャラクタ.バーとスペースで構成されるパターン。データを直接的に表現するか、数字や文字、句読点、メッセージ内の通信制 御などの制御機能を示します。

キャラクタ間ギャップ.ディスクリート コードでの、隣接する 2 つのバーコード キャラクタ間のスペース。

鏡面反射.平面から鏡のように直接反射される光。これによってバーコードのデコードが困難になる場合があります。

共有キー.共有キーによる認証は、AP と MU の両方で認証キーを共有するアルゴリズムです。

許容範囲.バーまたはスペースの幅の公称値からの許容される誤差。

<

- **クレードル**. ターミナルのバッテリの充電やホスト コンピュータとの通信に使用します。使用していないときは、ターミナルの保 管場所となります。
- **クワイエット ゾーン**. バーコードのスタート キャラクタの前とストップ キャラクタの後ろにある、暗いマークが存在しない空白の部分。

J

- 公称サイズ.バーコードの標準サイズ。多くの UPC/EAN コードは、一定の倍率の範囲(公称値の 0.80 ~ 2.00)で使用されます。
- 公称値.特定のパラメータの正確な(または理想的な)目標値。この値からの正と負の誤差として、許容範囲が指定されます。
- コード長. バーコードの、スタート キャラクタとストップ キャラクタの間にあるデータ キャラクタの数 (スタート キャラクタと ストップ キャラクタは含まない)。
- コールド ブート. コールド ブートは、モバイル コンピュータを再起動し、ユーザーが保存したすべてのレコードやエントリを消去します。
- コンティニアス コード.シンボル内のすべてのスペースがキャラクタの一部になるようなバーコードまたはシンボル。コンティニアス コードにはキャラクタ間ギャップがありません。ギャップがない分、情報密度が高くなります。

さ

サブネット.1つのネットワーク上で、同じルーターのサービスを受ける複数のノードのサブセット。「ルータ」を参照してください。

サブネット マスク. IP アドレスのネットワーク部分とホスト部分を分離するために使用される 32 ビットの数字。カスタム サブ ネット マスクは、IP ネットワークをさらに小さなサブセクションに分割します。マスクはバイナリパターンであり、IP アド

用語集8 LI4278 プロダクト リファレンス ガイド

レスと組み合わせることで、ホスト ID アドレス フィールドの一部をサブネットのフィールドに置き換えます。多くの場合、 デフォルトは 255.255.255.0 です。

し

自動識別. スキャンされたバーコードのコード タイプを判別する、インタフェース コントローラの機能。この識別を行ってから、 情報コンテンツを読み取ります。

焦点深度 スキャナがある一定の最小光源幅でシンボルを読み取れる最短距離と最長距離の間の範囲。

- ポイント・ツー・ポイント モード.クレードルには1台のスキャナしか接続できません。
- ポイント・ツー・ポイント モードとロック ペアリング モード.クレードルにスキャナがペアリングされている場合、新しいス キャナを接続しようとしても拒否され、接続済みのスキャナがそのまま接続されます。このモードでは、コネクション維持時 間を設定する必要があります。エンドユーザー側で、ロックされているスキャナの基本ペアリングを無効にして新しいスキャナを 接続することが必要となる場合があります。このような場合、エンドユーザーは ロック無効化 (4-22 ページ) をスキャンして 新しいスキャナをクレードルに接続することができます (それまで接続されていたスキャナの接続は切断されます)。ペアリン グ解除 (4-22 ページ) をスキャンするか、別のクレードルとペアリングすることによってスキャナとクレードルのペアリング を解除した場合、その時点で別のスキャナをクレードルとペアリングすることができるようになります。
- **ポイント・ツー・ポイント モードと非ロック ペアリング モード**.新しいスキャナは任意の時点でクレードルにペアリングすることができます。新たにペアリングしたスキャナが優先されるため、既存のスキャナとのペアリングが解除されます。
- **シンボル**. 特定のシンボル体系の規則に従ってデータをエンコードする、スキャン可能な単位。通常はスタート/ストップ キャラ クタ、クワイエット ゾーン、データ キャラクタおよびチェック キャラクタを含みます。

シンボル アスペクト比率.シンボルの幅に対する高さの比率。

- シンボル体系. 特定のバーコード タイプ (UPC/EAN、Code 39、PDF417 など) のデータを表すための構造的な規則と規約。
- シンボルの高さ. 最初の行と最後の行の、クワイエット ゾーンの外側の端の間の距離。
- シンボルの長さ. スタート キャラクタに隣接するクワイエット ゾーン (マージン)の最初から、ストップ キャラクタに隣接するク ワイエット ゾーン (マージン)の最後までを計測した、シンボルの長さ。

す

スキャナ. バーコードをスキャンし、シンボルのバーとスペースに対応するデジタル化されたパターンを作成するための電子デバ イス。主に次の3つのコンポーネントで構成されます。1) 光源 (レーザまたは光電セル)-バーコードに光を照射する2) 光検 出器 - 反射光の差異を登録する(スペースからより多くの光が反射される)3) 信号処理回路 - 光検知器の出力をデジタル化され たバーのパターンに変換する。

スキャンェリア.シンボルを収めるための領域。

- スキャン シーケンス. バーコード メニューをスキャンすることにより、バーコード読み取りシステムのパラメータをプログラミン グまたは設定する方法。
- スキャンモード.スキャナが通電され、プログラミングされてバーコードを読み取れる状態になっていること。
- スタート/ストップキャラクタ.スキャナに読み取りの開始と終了の指示やスキャン方向を提示するバーとスペースのパターン。 通常、スタートキャラクタとストップキャラクタは水平コードの左右のマージンに隣接しています。
- スペース.バーコードで、バーの間の背景によって形成される明るいエレメント。

せ

セルフチェック機能付きコード. チェック アルゴリズムを使用して、バーコードのキャラクタ内にあるエンコードのエラーを検出 するシンボル体系。

そ

ソフト リセット.「ウォーム ブート」を参照してください。

た

端末エミュレーション (Terminal Emulation).「ターミナル エミュレーション」では、メインフレーム以外のリモート ターミナル で、キャラクタベースのメインフレーム セッション (すべての表示機能、コマンドおよびファンクション キーを含む)をエ ミュレートします。VC5000 シリーズでは、3270、5250 および VT220 でターミナル エミュレーションをサポートしています。

ち

τ

- **ディスクリート コード**. キャラクタの間のスペース (キャラクタ間ギャップ) がコードに含まれない、バーコードまたはシンボル。
- **デコード**. バーコードのシンボル体系 (UPC/EAN など) を識別し、スキャンしたバーコードの内容を分析すること。
- デコードアルゴリズム.パルス幅を、バーコード内でエンコードされた文字や数字のデータ表示に変換する読み取りスキーム。
- **デコード率.** バーコードを 1 回スキャンして正しく読み取れる確率の平均値。上手く設計されたバーコード スキャン システムでは、この確率が 100% に近くなります。
- デッド ゾーン. スキャナの読み取り範囲内の領域。ここで鏡面反射すると、正しく読み取れなくなる場合があります。

に

入出力ポート. I/O ポートは主に、ターミナルのメモリで情報を入力または出力するためのみに使用されます。9000 シリーズのモバイル コンピュータには、シリアル ポートと USB ポートが付いています。

は

バー.印刷されたバーコードの黒い部分。

チェック デジット.シンボルが正しく読み取られているかどうかを検証するために使用する数字。スキャナは読み取ったデータを 演算式に代入し、その結果算出された数字が、エンコードされていたチェック デジットと一致するかどうかを確認します。 チェック デジットは、UPC では必須ですが、他のシンボル体系では省略可能です。チェック デジットを使用すると、シンボ ルを読み取ったときに代入エラーが発生する可能性が小さくなります。

用語集10 LI4278 プロダクト リファレンス ガイド

バーコード.さまざまな幅のバーとスペースのパターン。数字や英数字のデータを機械が読み取れる形式で表します。一般的なバー コードの形式は、先頭マージン、スタートキャラクタ、データキャラクタ(またはメッセージキャラクタ)、チェックキャラ クタ(あれば)、ストップキャラクタ、および末尾マージンで構成されます。この枠組みの中で、認識可能なシンボル体系が それぞれ独自の形式を持ちます。「シンボル体系」を参照してください。

バーコードの密度 測定単位あたりの表示されるキャラクタ数 (インチあたりのキャラクタ数など)。

ハードリセット.「コールドブート」を参照してください。

バーの高さ.バーの幅に対して直角に測定したバーの寸法。

バーの幅.シンボルのスタート キャラクタにもっとも近い端から、同じバーの末尾の端までを測定したバーの太さ。

バイト.アドレス指定可能な境界上で、特定の文字や数値を表すパターン内で組み合わされた、隣接した8桁の2進数(0と1)。 ビットには右から0~7の番号が付いており、ビット0が下位のビットです。メモリ内では、1バイトを使用して1つのASCII 文字を格納します。

発光ダイオード.「LED」を参照してください。

パラメータ.さまざまな値を割り当てることができる変数。

反射率.照射された面から反射される光の量。

半導体レーザ. 電源に接続してレーザ光線を発生する、ガリウム砒素半導体タイプのレーザ。このタイプのレーザは、コヒーレント光のコンパクトな光源です。

ひ

ビット.1桁の2進数。1ビットが、バイナリ情報の基本単位です。一般的には、連続した8ビットが1バイトのデータを構成します。バイト内の0と1の値のパターンによって、そのバイトの意味が決定されます。

ビット/秒 (bps). 送信または受信されるビット数。

標準トリガモード.このモードは、デジタルスキャナがカウンタや壁から取り外されている状態の場合に使用します。このモード では、デジタルスキャナをバーコードに向けてトリガを引き、読み取りを行います。

ふ

- **復号**. 受信した暗号データをデコードおよびスクランブル解除すること。「暗号化」と「キー」も参照してください。
- **ブートまたはブートアップ**.コンピュータが起動時に実行するプロセス。ブートアップ中、コンピュータは自己診断テストを実行 したり、ハードウェアやソフトウェアを設定したりすることができます。

フラッシュディスク.アプリケーションや設定ファイルを格納するために、不揮発性のメモリを補助する追加ストレージ。

- **フラッシュ メモリ**. フラッシュ メモリは、システム ファームウェアが保存されている不揮発性メモリです。システムの電源が遮断されても、データは失われません。
- プレゼンテーションモード. デジタル スキャナをカウンタの上や壁に取り付ける場合に主に使用します。このモードでは、デジタル スキャナは連続 (常時 ON) モードで動作し、読み取り範囲に示されたバーコードを自動的に読み取ります。
- プログラム モード.スキャナがパラメータ値用に構成されている状態。「スキャン モード」を参照してください。

ほ

ホスト コンピュータ. ネットワーク内の他のターミナルに、演算やデータベース アクセス、監視プログラム、ネットワーク制御な どのサービスを提供するコンピュータ。

ま

マルチポイント・ツー・ポイント モード.クレードルには最大数のスキャナ (標準クレードルの場合3台、プレゼンテーションクレードルの場合7台)を接続できます。

も

文字セット.特定のバーコード シンボル体系で実行されるエンコードで利用可能なキャラクタ。

よ

読み取りミス (誤復号). リーダーまたはインタフェース コントローラのデータ出力が、バーコードにエンコードされたデータと一 致しない場合に発生する状況。

る

ルーター.ネットワークに接続して、パケットのフィルタリングに必要なプロトコルをサポートするデバイス。一般的には、配線の範囲を広げたり、ネットワークのトポロジをサブネットにまとめたりするために使用されます。「サブネット」を参照してください。

れ

レーザ. Light Amplification by Stimulated Emission of Radiation の略。レーザは強い光源です。白熱灯バルブから出力される光と 異なり、レーザからの光はすべて同じ周波数です。レーザ光は一般的にコヒーレントであり、高いエネルギー密度を持ってい ます。

レーザスキャナ.レーザー光のビームを使用するタイプのバーコード リーダー。

Zebra Technologies Corporation Lincolnshire, IL U.S.A. http://www.zebra.com

Zebra および図案化された Zebra ヘッドは、ZIH Corp の商標であり、世界各地の多数の法域で 登録されています。 その他のすべての商標は、その商標の各所有者が権利を有しています。 © 2016 Symbol Technologies LLC, a subsidiary of Zebra Technologies Corporation. All rights reserved.